Skip to main content
Log in

A Generalized Family of Symmetric Multistep Methods with Minimal Phase-Lag for Initial Value Problems in Ordinary Differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In the present paper, we formulate a generalized family of symmetric multistep methods (GFSMMs) for solving initial value problems in ordinary differential equations. Future solution values are inherent in the GFSMMs. However, a purely interpolatory approach is applied for the derivation of the GFSMMs and a detailed theoretical and computational study is presented. These include the order, stability, interval of periodicity, and phase-lag (PL) analysis of the methods. Some of the proposed methods herein possess minimal PL error constants, while some have high-order PL. Also, some of the proposed GFSMMs are P-stable, while some exhibit multiple intervals of periodicity. The application of the newly formulated schemes are demonstrated in the numerical experiments presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lambert, J.D.: Numerical Methods for Ordinary Differential Systems: the Tnitial Value Problem. Wiley, New York (1973)

    Google Scholar 

  2. Fatunla, S.O.: Numerical Methods for Initial Value Problems in Ordinary Differential Equations. Academic Press, Boston (1988)

    MATH  Google Scholar 

  3. Lambert, J.D., Watson, I.: Symmetric multistep methods for periodic initial value problems. J. Inst. Math. Appls. 18, 189–202 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Neta, B.: \(P\)-stable symmetric super-implicit methods for periodic initial value problems. Comput. Math. Appl. 50, 701–705 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Simos, T.E.: Two-step almost \(P\)-stable complete in phase methods for the numerical integration of second order periodic initial-value problems. Int. J. Comput. Math. 46, 77–85 (1992)

    Article  MATH  Google Scholar 

  6. Fukushima, T.: Super-implicit multistep methods. In: Proceedings of of the 31st Symposium on Celestial Mechanics. March 1999, Ibaraki, Japan, (Edited by H. Umehara), pp. 343–366 (1999)

  7. Cash, J.R.: High order \(P\)-stable formulae for the numerical integration of periodic initial value problems. Numer. Math. 37, 355–370 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Borwein, J.M., Skerritt, M.P.: An Introduction to Modern Mathematical Computing with Mathematica. Springer, Berlin (2012)

    MATH  Google Scholar 

  9. Jain, M.K., Anantha Krishnaiah, R.K.: \(P\)-stable methods for periodic initial value problems of second order differential equations. BIT 19, 347–355 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chawla, M.M., Neta, B.: Families of two-step fourth order \(P\)-stable methods for second order differential equations. J. Comp. Appl. Maths. 15, 213–223 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ibrahim, O.M.: High order symmetric super-implicit LMM with minimal phase-lag error. M.Sc. Thesis, Department of Mathematics, University of Benin, Benin City, Nigeria (2016)

  12. Ibrahim, O.M., Ikhile, M.N.O.: Highly stable super-implicit hybrid methods for special second order IVPs. Am. J. Appl. Sci. Res. 3(3), 21–27 (2017)

    Google Scholar 

  13. Ibrahim, O.M., Ikhile, M.N.O.: On the construction of high accuracy symmetric, super-implicit hybrid formulas with phase-lag properties. Trans. Nigeria Assoc. Math. Phys. 4, 101–108 (2017)

    Google Scholar 

  14. Fatunla, S.O.: One-leg hybrid formula for second order IVPs. Comput. Math. Appl. 10, 329–333 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fatunla, S.O., Ikhile, M.N.O., Otunta, F.O.: A class of \(P\)-stable linear multi-step. Numer. Methods. Int. J. Comput. Math. 72, 1–13 (1997)

    MATH  Google Scholar 

  16. Felix, I.C., Okuonghae, R.I.: On the construction of \(P\)-stable hybrid multistep methods for second order ODEs. Far East J. Appl. Math. 99(3), 259–273 (2018)

    Article  MATH  Google Scholar 

  17. Felix, I.C., Okuonghae, R.I.: On the generalisation of Padé approximation approach for the construction of \(P\)-stable hybrid linear multistep methods. Int. J. Appl. Comput. Math. 5(93), 1–20 (2019)

    MathSciNet  MATH  Google Scholar 

  18. Medvedev, M., Simos, T.E., Tsitouras, C.: Explicit, two-stage, sixth-order, hybrid four-step methods for solving \(y^{^{\prime \prime }}(x) = f(x, y)\). Math. Methods. Appl. Sci. 20, 1–10 (2018)

    MathSciNet  MATH  Google Scholar 

  19. Obrechkoff, N.: On mechanical quadrature, (Bulgarina, French summary). Spisanie Buglar. Akad. Nauk 65, 191–289 (1942)

    Google Scholar 

  20. Tsitouras, C., Simos, T.E.: Trigonometric-fitted explicit Numerov-type method with vanishing phase-lag and its first and second derivatives. Mediterr. J. Math. 15(4), 1–16 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Brusa, L., Nigro, L.: A one-step method for direct integration of structural dynamic equations. Int. J. Numer. Methods Eng. 15, 685–699 (1980)

    Article  MATH  Google Scholar 

  22. Coleman, J.P.: Numerical methods for \(y^{^{\prime \prime }} = f(x, y)\) via rational approximations for the cosine. IMA J. Num. Anal. 9, 145–165 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  23. Raptis, A.D., Simos, T.E.: A four-step phase-fitted method for the numerical integration of special second order initial value problems. BIT 31, 160–168 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  24. Simos, T.E.: A \(P\)-stable complete in phase Obrechkoff trigonometric fitted method for periodic initial value problems. Prec. R. Se. 441, 283–289 (1993)

    MathSciNet  MATH  Google Scholar 

  25. Simos, T.E., Williams, P.S.: A finite-difference method for the numerical solution of the Schrödinger equation. J. Comput. Appl. Math. 79(2), 189–205 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kovalnogov, V.N., Fedorov, R.V., Simos, T.E.: New hybrid symmetric two step scheme with optimized characteristics for second order problems. J. Math. Chem. 20, 1–29 (2018)

    MathSciNet  MATH  Google Scholar 

  27. Neta, B.: \(P\)-stable high order super-implicit and Obrechkoff methods for periodic initial value problems. Comput. Math. Appl. 54, 117–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Van Dooren, R.: Stabilization of Cowell’s classical finite difference methods for numerical integration. J. Comput. Phys. 16, 186–192 (1974)

    Article  MATH  Google Scholar 

  29. Otto, S.R., Denier, J.P.: An Introduction to Programming and Numerical Methods in MATLAB. Springer, London (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

This research work has greatly benefited from the Advanced Research Laboratory, Department of Mathematics, University of Benin, of Prof. Francis O. Otunta. This is to express our gratitude to the anonymous reviewer whose comments have greatly improved the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwasegun M. Ibrahim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, O.M., Ikhile, M.N.O. A Generalized Family of Symmetric Multistep Methods with Minimal Phase-Lag for Initial Value Problems in Ordinary Differential Equations. Mediterr. J. Math. 17, 87 (2020). https://doi.org/10.1007/s00009-020-01507-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01507-5

Keywords

Mathematics Subject Classification

Navigation