Existence, Uniqueness and Homogenization of Nonlinear Parabolic Problems with Dynamical Boundary Conditions in Perforated Media

  • María AnguianoEmail author


We consider a nonlinear parabolic problem with nonlinear dynamical boundary conditions of pure-reactive type in a media perforated by periodically distributed holes of size \(\varepsilon \). The novelty of our work is to consider a nonlinear model where the nonlinearity also appears in the boundary. The existence and uniqueness of solution is analyzed. Moreover, passing to the limit when \(\varepsilon \) goes to zero, a new nonlinear parabolic problem defined on a unified domain without holes with zero Dirichlet boundary condition and with extra terms coming from the influence of the nonlinear dynamical boundary conditions is rigorously derived.


Homogenization perforated media dynamical boundary conditions 

Mathematics Subject Classification

Primary 35B27 Secondary 35K57 



  1. 1.
    Cioranescu, D., Donato, P., Zaki, R.: Asymptotic behavior of elliptic problems in perforated domains with nonlinear boundary conditions. Asymptot. Anal. 53, 209–235 (2007)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Cabarrubias, B., Donato, P.: Homogenization of a quasilinear elliptic problem with nonlinear Robin boundary conditions. Appl. Anal. 91(6), 1111–1127 (2012)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chourabi, I., Donato, P.: Homogenization and correctors of a class of elliptic problems in perforated domains. Asymptot. Anal. 92, 1–43 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chourabi, I., Donato, P.: Homogenization of elliptic problems with quadratic growth and nonhomogenous Robin conditions in perforated domains. Chin. Ann. Math. 37B(6), 833–852 (2016)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Donato, P., Monsurrò, S., Raimondi, F.: Homogenization of a class of singular elliptic problems in perforated domains. Nonlinear Anal. 173, 180–208 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Timofte, C.: Parabolic problems with dynamical boundary conditions in perforated media. Math. Model. Anal. 8(4), 337–350 (2003)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Wang, W., Duan, J.: it Homogenized dynamics of stochastic partial differential equations with dynamical boundary conditions. Commun. Math. Phys. 275(1), 163–186 (2007)CrossRefGoogle Scholar
  8. 8.
    Tartar, L.: Problèmes d’homogénéisation dans les équations aux dérivées partielles. Cours Peccot Collège de France (1977)Google Scholar
  9. 9.
    Cioranescu, D., Donato, P.: Homogénéisation du problème du Neumann non homogéne dans des ouverst perforés. Asymptot. Anal. 1, 115–138 (1988)CrossRefGoogle Scholar
  10. 10.
    Vanninathan, M.: Homogenization of eigenvalues problems in perforated domains. Proc. Indian Acad. Sci. 90, 239–271 (1981)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Lions, J.L.: Quelques Méthodes de Résolution des Problèmes aux Limites Non linèaires. Dunod, Paris (1969)zbMATHGoogle Scholar
  12. 12.
    Evans, L.C.: Partial Differential Equations. Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence (1991)Google Scholar
  13. 13.
    Robinson, J.C.: Infinite-Dimensional Dynamical Systems. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  14. 14.
    Cioranescu, D., Saint Jean Paulin, J.: Homogenization in open sets with holes. J. Math. Anal. Appl. 71, 590–607 (1979)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Cioranescu, D., Donato, P.: An Introduction to Homogenization. Oxford Lectures Series in Mathematics and its Applications, 17, New York (1999)Google Scholar
  16. 16.
    Conca, C., Díaz, J.I., Liñán, A., Timofte, C.: Homogenization in chemical reactive flows. Electron. J. Diff. Equ. 2004(40), 1–22 (2004)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Cioranescu, D., Donato, P., Ene, H.: Homogenization of the Stokes problem with non homogeneous slip boundary conditions. Math. Methods Appl. Sci. 19, 857–881 (1996)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Departamento de Análisis Matemático, Facultad de MatemáticasUniversidad de SevillaSevillaSpain

Personalised recommendations