Skip to main content
Log in

On Mittag–Leffler d-Orthogonal Polynomials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a first result of a long-term research project dealing with the construction of d-orthogonal polynomials with Hahn’s property. We shall show that the latter class could be characterized by expanding a polynomial as a finite sum of first derivatives of the elements of the sequence and we shall explain how this characterization could be used to construct Hahn-classical d-orthogonal polynomials as well. In this paper, we look for solutions of linear combinations of the first derivatives of two consecutive elements of the sequence by considering the derivative operator and Delta (discrete) operator. The resulting polynomials constitute a particular class of Laguerre d-orthogonal polynomials and a generalization of Mittag–Leffler polynomials, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aptekarev, A.I., Branquinho, A., Van Assche, W.: Multiple orthogonal polynomials for classical weights. Trans. Am. Math. Soc. 355(10), 3887–3914 (2003)

    Article  MathSciNet  Google Scholar 

  2. Aversú, J., Coussement, J., Van Assche, W.: Some discrete multiple orthogonal polynomials. J. Comput. Appl. Math. 153(1–2), 19–45 (2003)

  3. Bateman, H.: The polynomial of Mittag–Leffler. Proc. Natl. Acad. Sci. USA 26, 491–496 (1940)

    Article  MathSciNet  Google Scholar 

  4. Ben Cheikh, Y.: On obtaining dual sequences via quasi-monomiality. Georgian Math. J. 9, 413–422 (2002)

    MathSciNet  MATH  Google Scholar 

  5. Ben Cheikh, Y.: Some results on quasi-monomiality. Appl. Math. Comput. 141, 63–76 (2003)

    MathSciNet  MATH  Google Scholar 

  6. Ben Cheikh, Y., Ben Romdhane, N.: On \(d\)-symmetric classical \(d\)-orthogonal polynomials. J. Comput. Appl. Math. 236, 85–93 (2011)

    Article  MathSciNet  Google Scholar 

  7. Ben Cheikh, Y., Ben Romdhane, N.: On \(d\)-symmetric \(d\)-orthogonal polynomials of Brenke type. J. Math. Anal. Appl. 416, 735–747 (2014)

    Article  MathSciNet  Google Scholar 

  8. Ben Cheikh, Y., Douak, K.: On the classical \(d\)-orthogonal polynomials defined by certain generating functions. II. Bull. Belg. Math. Soc. 7, 591–605 (2000)

    MATH  Google Scholar 

  9. Ben Cheikh, Y., Zeghouani, A.: Some discrete \(d\)-orthogonal polynomial sets. J. Comput. Appl. Math. 156, 2–22 (2003)

    Article  MathSciNet  Google Scholar 

  10. Ben Cheikh, Y., Zeghouani, A.: \(d\)-Orthogonality via generating functions. J. Comput. Appl. Math. 199, 253–263 (2007)

    Article  MathSciNet  Google Scholar 

  11. Douak, K.: The relation of the \(d\)-orthogonal polynomials to the Appell polynomials. J. Comput. Appl. Math. 70, 279–295 (1996)

    Article  MathSciNet  Google Scholar 

  12. Douak, K., Maroni, P.: Une caractérisation des polynômes \(d\)-orthogonaux classiques. J. Approx. Theory 82, 177–204 (1995)

    Article  MathSciNet  Google Scholar 

  13. Johnston, S.J., Jordaan, K.: Quasi-orthogonality and real zeros of some \(_2F_2\) and \(_3F_2\) polynomials. Appl. Numer. Math. 90, 1–8 (2015)

    Article  MathSciNet  Google Scholar 

  14. Marcellán, F., Saib, A.: Linear combination of \(d\)-orthogonal polynomials. Bull. Malays. Math. Sci. Soc. 42, 2009–2038 (2019)

    Article  MathSciNet  Google Scholar 

  15. Maroni, P.: L’orthogonalité et les récurrences de polynômes d’ordre supérieur à deux. Ann. Fac. Sci. Toulouse 10, 105–139 (1989)

    Article  MathSciNet  Google Scholar 

  16. Saib, A., Zerouki, E.: Some inverse problems for \(d\)-orthogonal polynomials. Mediterr. J. Math. 10, 865–885 (2013)

    Article  MathSciNet  Google Scholar 

  17. Saib, A.: On semi-classical \(d\)-orthogonal polynomials. Math. Nachr. 286, 1863–1885 (2013)

    Article  MathSciNet  Google Scholar 

  18. Saib, A.: Some new perspectives on \(d\)-orthogonal polynomials, arXiv:1605.00049

  19. Srivastava, H.M., Manocha, H.L.: A teatise on generating functions.Halset Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York (1985)

  20. Van Assche, W., Coussement, E.: Some classical multiple orthogonal polynomials. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. J. Comput. Appl. Math. 127(1–2), 317–347 (2001). https://doi.org/10.1016/S0377-0427(00)00503-3

    Article  MathSciNet  Google Scholar 

  21. Varma, S., Tasdelen, F.: On a different kind of \(d\)-orthogonal polynomials that generalize the Laguerre polynomials. Math. Aeterna 2, 561–572 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Zaghouani, A.: Some basic \(d\)-orthogonal polynomial sets. Georgian Math. J. 12, 583–593 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Part of this work was performed while the author is visiting the KU Leuven and he kindly thanks its hospitality. He also thanks the referee of this paper for his/her useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdessadek Saib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saib, A. On Mittag–Leffler d-Orthogonal Polynomials. Mediterr. J. Math. 17, 19 (2020). https://doi.org/10.1007/s00009-019-1449-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1449-0

Keywords

Mathematics Subject Classification

Navigation