Skip to main content
Log in

Loxodromes on Invariant Surfaces in Three-Manifolds

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove some results concerning the loxodromes on an invariant surface in a three-dimensional Riemannian manifold, a part of which generalizes classical results about loxodromes on rotational surfaces in \({{\mathbb {R}}}^3\). In particular, we show how to parametrize a loxodrome on an invariant surface of \({\mathbb {H}}^2\times {{\mathbb {R}}}\) and \({\mathbb {H}}_3\), and we exhibit the loxodromes of some remarkable minimal invariant surfaces of these spaces. In addition, we give an explicit description of the loxodromes on an invariant surface with constant Gauss curvature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The elliptic integral of the second kind is defined by

    $$\begin{aligned} E(\phi ,m)=\int _{0}^{\phi }\sqrt{1-m\sin ^2\theta }\,\text {d}\theta . \end{aligned}$$
  2. The Gaussian hypergeometric function \(F(\alpha _1,\alpha _2,\beta _1,z)\) is defined for \(|z|<1\) by the Pochhammer power series:

    $$\begin{aligned} F(\alpha _1,\alpha _2,\beta _1,z) \overset{not}{=} _2F_1[\alpha _1,\alpha _2,\beta _1,z]=\sum _{n=0}^\infty \frac{(\alpha _1)_n\,(\alpha _2)_n}{(\beta _1)_n}\frac{z^n}{n!}. \end{aligned}$$

    Here, \(\alpha _1,\alpha _2,\beta _1\in {\mathbb {R}}\), \(c\notin {\mathbb {Z}}_{\le 0}\), and \((\lambda )_n =\lambda (\lambda +1)\cdots (\lambda +n-1)\).

References

  1. Alexandrino, M.M., Bettiol, R.G.: Lie groups and geometric aspects of isometric actions. Springer, Cham (2015)

    Book  Google Scholar 

  2. Babaarslan, M., Yayli, Y.: Differential equation of the loxodrome on a helicoidal surface. J. Navig. 68, 962–970 (2015)

    Article  Google Scholar 

  3. Back, A., do Carmo, M.P., Hsiang, W.Y.: On some fundamental equations of equivariant Riemannian geometry. Tamkang J. Math. 40(4), 343–376 (2009)

    Article  MathSciNet  Google Scholar 

  4. Bianchi, L.: Gruppi continui e finiti. Ed. Zanichelli, Bologna (1928)

  5. BREDON, G.: Introduction to Compact Transformation Groups. Academic Press, New York (1972)

    MATH  Google Scholar 

  6. Caddeo, R., Piu, P., Ratto, A.: \({SO}(2)\)-invariant minimal and constant mean curvature surfaces in three dimensional homogeneous spaces. Manuscr. Math. 87, 1–12 (1995)

    Article  Google Scholar 

  7. Caddeo, R., Piu, P., Ratto, A.: Rotational surfaces in \({\mathbb{H}}_{3}\) with constant Gauss curvature. Boll. dell’Unione. Mat. Ital. B 10, 341–357 (1996)

    MATH  Google Scholar 

  8. Cartan, É.: Leçons sur la géométrie des espaces de Riemann. Gauthier Villars, Paris (1946)

    MATH  Google Scholar 

  9. Figueroa, C.B., Mercuri, F., Pedrosa, R.H.L.: Invariant surfaces of the Heisenberg groups. Ann. Mat. Pura Appl. 177, 173–194 (1999)

    Article  MathSciNet  Google Scholar 

  10. Lopez, R., Munteanu, M.I.: Invariant surfaces in homogenous space Sol with constant curvature. Mathematische Nachrichten 287, 1013–1024 (2014)

    Article  MathSciNet  Google Scholar 

  11. Montaldo, S., Onnis, I.I.: Invariant CMC surfaces in \({\mathbb{H}}^2\times {\mathbb{R}}\). Glasg. Math. J. 46, 311–321 (2004)

    Article  MathSciNet  Google Scholar 

  12. Montaldo, S., Onnis, I.I.: Invariant surfaces in a three-manifold with constant Gaussian curvature. J. Geom. Phys. 55, 440–449 (2005)

    Article  MathSciNet  Google Scholar 

  13. Montaldo, S., Onnis, I.I.: Biharmonic curves on an invariant surfaces. J. Geom. Phys. 59(3), 391–399 (2009)

    Article  MathSciNet  Google Scholar 

  14. Montaldo, S., Onnis, I.I.: Geodesics on an invariant surface. J. Geom. Phys. 61, 1385–1395 (2011)

    Article  MathSciNet  Google Scholar 

  15. Noble, C.A.: Note on loxodromes. Bull. Am. Math. Soc 12, 116–119 (1905)

    Article  MathSciNet  Google Scholar 

  16. Olver, P.J.: Application of Lie Groups to Differential Equations. GTM 107. Springer-Verlag, New York (1986)

    Book  Google Scholar 

  17. Onnis, I.I.: Invariant surfaces with constant mean curvature in \({\mathbb{H}}^2\times {\mathbb{R}}\). Ann. Mat. Pura Appl. 187, 667–682 (2008)

    Article  MathSciNet  Google Scholar 

  18. Palais, R.S.: On the existence of slices for actions of non-compact Lie groups. Ann. Math. 73(2), 295–323 (1961)

    Article  MathSciNet  Google Scholar 

  19. Piu, P.: Sur les flots riemanniens des espaces de D’Atri de dimension 3. Rend. Sem. Mat. Univ. Politech. Torino 62, 265–277 (2004)

    MathSciNet  Google Scholar 

  20. Piu, P., Profir, M.M.: On the three-dimensional homogenous SO(2)-isotropic Riemannian manifolds. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 57, 361–376 (2011)

    MathSciNet  MATH  Google Scholar 

  21. Tomter, P.: Constant mean curvature surfaces in the Heisenberg group. Proc. Sympos. Pure Math. 54, 485–495, Am. Math. Soc., Providence, RI (1993)

  22. Vranceanu, G.: Leçons de géométrie différentielle. Ed. Acad. Rep. Pop. Roum., vol I, Bucarest (1957)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Piu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The second author was supported by grant 2016/24707-4, São Paulo Research Foundation (Fapesp), and by CNPq productivity grant 312700/2017-2. The other two authors were supported by GNSAGA-INdAM, Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caddeo, R., Onnis, I.I. & Piu, P. Loxodromes on Invariant Surfaces in Three-Manifolds. Mediterr. J. Math. 17, 6 (2020). https://doi.org/10.1007/s00009-019-1439-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1439-2

Keywords

Mathematics Subject Classification

Navigation