Skip to main content
Log in

Cesàro Convergent Sequences in the Mackey Topology

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A Banach space X is said to have property (\(\mu ^s\)) if every weak\(^*\)-null sequence in \(X^*\) admits a subsequence, such that all of its subsequences are Cesàro convergent to 0 with respect to the Mackey topology. This is stronger than the so-called property (K) of Kwapień. We prove that property \((\mu ^s)\) holds for every subspace of a Banach space which is strongly generated by an operator with Banach–Saks adjoint (e.g., a strongly super weakly compactly generated space). The stability of property \((\mu ^s)\) under \(\ell ^p\)-sums is discussed. For a family \(\mathcal {A}\) of relatively weakly compact subsets of X, we consider the weaker property \((\mu _\mathcal {A}^s)\) which only requires uniform convergence on the elements of \(\mathcal {A}\), and we give some applications to Banach lattices and Lebesgue–Bochner spaces. We show that every Banach lattice with order continuous norm and weak unit has property \((\mu _\mathcal {A}^s)\) for the family of all L-weakly compact sets. This sharpens a result of de Pagter, Dodds, and Sukochev. On the other hand, we prove that \(L^1(\nu ,X)\) (for a finite measure \(\nu \)) has property \((\mu _\mathcal {A}^s)\) for the family of all \(\delta \mathcal {S}\)-sets whenever X is a subspace of a strongly super weakly compactly generated space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avilés, A., Rodríguez, J.: Convex combinations of weak*-convergent sequences and the Mackey topology. Mediterr. J. Math. 13(6), 4995–5007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baernstein, A.: On reflexivity and summability. Studia Math. 42, 91–94 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beauzamy, B.: Opérateurs uniformément convexifiants. Studia Math. 57(2), 103–139 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beauzamy, B.: Propriété de Banach-Saks. Studia Math. 66(3), 227–235 (1980)

    Article  MATH  Google Scholar 

  5. Blass, A.: Combinatorial Cardinal Characteristics of the Continuum, Handbook of Set Theory, vols. 1, 2, 3, pp. 395–489. Springer, Dordrecht (2010)

    MATH  Google Scholar 

  6. Calabuig, J.M., Lajara, S., Rodríguez, J., Sánchez-Pérez, E.A.: Compactness in \(L^1\) of a vector measure. Studia Math. 225(3), 259–282 (2014)

    MathSciNet  MATH  Google Scholar 

  7. Cembranos, P., Mendoza, J.: Banach Spaces of Vector-Valued Functions, Lecture Notes in Mathematics, vol. 1676. Springer, Berlin (1997)

    Chapter  MATH  Google Scholar 

  8. Cheng, L., Cheng, Q., Zhang, J.: On super fixed point property and super weak compactness of convex subsets in Banach spaces. J. Math. Anal. Appl. 428(2), 1209–1224 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Day, M.M.: Some more uniformly convex spaces. Bull. Am. Math. Soc. 47, 504–507 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  10. de Pagter, B., Dodds, P.G., Sukochev, F.A.: On weak* convergent sequences in duals of symmetric spaces of \(\tau \)-measurable operators. Isr. J. Math. 222(1), 125–164 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Deville, R., Godefroy, G., Zizler, V.: Smoothness and Renormings in Banach Spaces, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64. Longman Scientific and Technical, Harlow (1993)

    MATH  Google Scholar 

  12. Diestel, J.: Sequences and Series in Banach Spaces, Graduate Texts in Mathematics, vol. 92. Springer, New York (1984)

    Book  Google Scholar 

  13. Diestel, J., Uhl, J.J. Jr.: Vector measures, American Mathematical Society, Providence, R.I., With a foreword by B. J. Pettis, Mathematical Surveys, No. 15

  14. Emmanuele, G.: On complemented copies of \(c_0\) in \(L^p_X,\) \(1\le p<\infty \). Proc. Am. Math. Soc. 104(3), 785–786 (1988)

    Google Scholar 

  15. Erdős, P., Magidor, M.: A note on regular methods of summability and the Banach–Saks property. Proc. Am. Math. Soc. 59(2), 232–234 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fabian, M., Montesinos, V., Zizler, V.: On weak compactness in \(L^{1}\) spaces. Rocky Mt. J. Math. 39(6), 1885–1893 (2009)

    MATH  Google Scholar 

  17. Figiel, T., Johnson, W.B., Pełczyński, A.: Some approximation properties of Banach spaces and Banach lattices. Isr. J. Math. 183, 199–231 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Flores, J., Hernández, F.L., Raynaud, Y.: Super strictly singular and cosingular operators and related classes. J. Oper. Theory 67(1), 121–152 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Frankiewicz, R., Plebanek, G.: Convex combinations and weak\(^{\ast }\) null sequences. Bull. Polish Acad. Sci. Math. 45(3), 221–225 (1997)

    MathSciNet  MATH  Google Scholar 

  20. Gao, N., Xanthos, F.: Unbounded order convergence and application to martingales without probability. J. Math. Anal. Appl. 415(2), 931–947 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Heinrich, S.: Finite representability and super-ideals of operators. Dissert. Math. (Rozprawy Mat.) 172, 37 (1980)

    MathSciNet  MATH  Google Scholar 

  22. Johnson, W.B.: A complementary universal conjugate Banach space and its relation to the approximation problem. Isr. J. Math. 13, 301–310 (1972)

    Article  MathSciNet  Google Scholar 

  23. Kačena, M., Kalenda, O.F.K., Spurný, J.: Quantitative Dunford–Pettis property. Adv. Math. 234, 488–527 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Kalton, N.J., Pełczyński, A.: Kernels of surjections from \(\cal{L}_1\)-spaces with an application to Sidon sets. Math. Ann. 309(1), 135–158 (1997)

    MathSciNet  MATH  Google Scholar 

  25. Kampoukos, K.K., Mercourakis, S.K.: On a certain class of \(\cal{K}_{\sigma \delta }\) Banach spaces. Topol. Appl. 160(9), 1045–1060 (2013)

    MathSciNet  MATH  Google Scholar 

  26. Lajara, S., Rodríguez, J.: Lebesgue–Bochner spaces, decomposable sets and strong weakly compact generation. J. Math. Anal. Appl. 389(1), 665–669 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer, Berlin, Function spaces (1979)

  28. Lopez-Abad, J., Ruiz, C., Tradacete, P.: The convex hull of a Banach-Saks set. J. Funct. Anal. 266(4), 2251–2280 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mercourakis, S., Stamati, E.: A new class of weakly K-analytic Banach spaces. Comment. Math. Univ. Carolin. 47(2), 291–312 (2006)

    MathSciNet  MATH  Google Scholar 

  30. Meyer-Nieberg, P.: Banach Lattices, Universitext. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  31. Nishiura, T., Waterman, D.: Reflexivity and summability. Studia Math. 23, 53–57 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  32. Okada, S., Ricker, W.J., Sánchez Pérez, E.A.: Optimal domain and integral extension of operators, Operator Theory: Advances and Applications, vol. 180, Birkhäuser, Basel, Acting in function spaces (2008)

    Book  MATH  Google Scholar 

  33. Poulios, C.: Regular methods of summability in some locally convex spaces. Comment. Math. Univ. Carolin. 50(3), 401–411 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Raja, M.: Finitely dentable functions, operators and sets. J. Convex Anal. 15(2), 219–233 (2008)

    MathSciNet  MATH  Google Scholar 

  35. Raja, M.: Super WCG Banach spaces. J. Math. Anal. Appl. 439(1), 183–196 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Rodríguez, J.: On the SWCG property in Lebesgue–Bochner spaces. Topol. Appl. 196(part A), 208–216 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  37. Rodríguez, J.: A class of weakly compact sets in Lebesgue–Bochner spaces. Topol. Appl. 222, 16–28 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rosenthal, H.P.: On injective Banach spaces and the spaces \(L^{\infty }(\mu )\) for finite measure \(\mu \). Acta Math. 124, 205–248 (1970)

    MathSciNet  MATH  Google Scholar 

  39. Schachermayer, W.: The Banach–Saks property is not \(L^{2}\)-hereditary. Isr. J. Math. 40(3–4), 340–344 (1982)

    MATH  Google Scholar 

  40. Szlenk, W.: Sur les suites faiblement convergentes dans l’espace \(L\). Studia Math. 25, 337–341 (1965)

    MathSciNet  MATH  Google Scholar 

  41. Wang, B., Zhao, Y., Qian, W.: On the weak-star extensibility. Nonlinear Anal. 74(6), 2109–2115 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by projects MTM2014-54182-P and MTM2017-86182-P (AEI/FEDER, UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Rodríguez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported by projects MTM2014-54182-P and MTM2017-86182-P (AEI/FEDER, UE).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, J. Cesàro Convergent Sequences in the Mackey Topology. Mediterr. J. Math. 16, 117 (2019). https://doi.org/10.1007/s00009-019-1400-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1400-4

Keywords

Mathematics Subject Classification

Navigation