Skip to main content
Log in

Controllability for a One-Dimensional Wave Equation in a Non-cylindrical Domain

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper deals with the controllability for a one-dimensional wave equation with mixed boundary conditions in a non-cylindrical domain. This equation models small vibrations of a string where an endpoint is fixed and the other is moving. As usual, we consider one main control (the leader) and an additional secondary control (the follower). We use Stackelberg–Nash strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lions, J.-L.: Hierarchic control. Math. Sci. Proc. Indian Acad. Sci. 104, 295–304 (1994)

    Article  MathSciNet  Google Scholar 

  2. Díaz, J., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control Mathematical and Numerical Investigations, 17–27. Springer, Berlin (2005)

    Google Scholar 

  3. González, G., Lopes, F., Rojas-Medar, M.: On the approximate controllability of Stackelberg–Nash strategies for Stokes equations. Proc. Am. Math. Soc. 141(5), 1759–1773 (2013)

    Article  MathSciNet  Google Scholar 

  4. Araruna, F., Fernández-Cara, E., Guerrero, S., Santos, M.: New results on the Stackelberg–Nash exact control of linear parabolic equations. Syst. Control Lett. 104, 78–85 (2017)

    Article  MathSciNet  Google Scholar 

  5. Araruna, F., Fernández-Cara, E., Santos, M.: Stackelberg-Nash exact controllability for linear and semilinear parabolic equations. ESAIM Control Optim. Calc. Variat. 21(3), 835–856 (2015)

    Article  MathSciNet  Google Scholar 

  6. Araruna, F., Fernández-Cara, E., Silva, L.: Hierarchic control for the wave equation. J. Optim. Theory Appl. 178(1), 264–288 (2018)

    Article  MathSciNet  Google Scholar 

  7. Sengouga, A.: Observability of the 1-D wave equation with mixed boundary conditions in a non-cylindrical domain. Mediterr. J. Math. 15, 62 (2018). https://doi.org/10.1007/s00009-018-1107-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Cui, L., Jiang, Y., Wang, Y.: Exact controllability for a one-dimensional wave equation with the fixed endpoint control. Bound. Value Probl. (2015). https://doi.org/10.1186/s13661-015-0476-4

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui, L., Song, L.: Exact controllability for a wave equation with fixed boundary control. Bound. Value Probl. (2014). https://doi.org/10.1186/1687-2770-2014-47

    Article  MathSciNet  MATH  Google Scholar 

  10. Miranda, M.M.: Exact controlllability for the wave equation in domains with variable boundary. Rev. Mat. Univ. Complut. Madr. 9, 435–457 (1996)

    MATH  Google Scholar 

  11. Coron, J.-M.: Control and Nonlinearity. American Math. Soc, Providence (2007)

    MATH  Google Scholar 

  12. Tucsnak, M., Weiss, G.: Observation and Control for Operator Semigroups. Birkhauser Advanced Texts. Birkhauser, Basel (2009)

    Book  Google Scholar 

  13. Cui, L., Liu, X., Gao, H.: Exact controllability for a one-dimensional wave equation in non-cylindrical domains. J. Math. Anal. Appl. 402, 612–625 (2013)

    Article  MathSciNet  Google Scholar 

  14. Jesus, I.: Approximate controllability for a one-dimensional wave equation with the fixed endpoint control. J. Differ. Equ. 263, 5175–5188 (2017)

    Article  MathSciNet  Google Scholar 

  15. Miranda, M.M.: HUM and the wave equation with variable coeficients. Asymptot. Anal. 11, 317–341 (1995)

    MATH  Google Scholar 

  16. Lions, J.-L.: Contrôle optimal des systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  17. Hörmander, L.: Linear Partial Differential Operators Die Grundlehren der mathematischen Wissenschaften, vol. 116. Academic, New York (1963)

    Book  Google Scholar 

  18. Rockafellar, R.: Convex Analysis. Princeton University Press, Princeton (1969)

    Google Scholar 

  19. Brezis, H.: Functional Analysis. Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)

    Book  Google Scholar 

  20. Ekeland, I., Temam, R.: Analyse Convexe et problèmes Variationnels. Dunod, Gauthier-Villars, Paris (1974)

    MATH  Google Scholar 

  21. Cui, L., Gao, H.: Exact controllability for a wave equation with mixed boundary conditions in a non-cylindrical domain. Electron. J. Differ. Equ. 101, 1–12 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Sun, H., Li, H., Lu, L.: Exact controllability for a string equation in domains with moving boundary in one dimension. Electron. J. Differ. Equ. 2015, 1–7 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author wants to express his gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaías Pereira de Jesus.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus, I.P. Controllability for a One-Dimensional Wave Equation in a Non-cylindrical Domain. Mediterr. J. Math. 16, 111 (2019). https://doi.org/10.1007/s00009-019-1393-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1393-z

Keywords

Mathematics Subject Classification

Navigation