Skip to main content
Log in

The Triple-Point Spectrum of Closed Orientable 3-Manifolds

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The triple-point numbers and the triple-point spectrum of a closed 3-manifold are topological invariants that give a measure of the complexity of the 3-manifold using the number of triple points of minimal filling Dehn surfaces. Basic properties of these invariants are presented, and the triple-point spectra of \(\mathbb {S}^2\times \mathbb {S}^1\) and \(\mathbb {S}^3\) are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aitchison, I.R., Matsumotoi, S., Rubinstein, J.H.: Immersed surfaces in cubed manifolds. Asian J. Math. 1(1), 85–95 (1997). https://doi.org/10.4310/AJM.1997.v1.n1.a4

    Article  MathSciNet  MATH  Google Scholar 

  2. Amendola, G.: A local calculus for nullhomotopic filling Dehn spheres. Algebr. Geom. Topol. 9(2), 903–933 (2009). https://doi.org/10.2140/agt.2009.9.903

    Article  MathSciNet  MATH  Google Scholar 

  3. Amendola, G.: A 3-manifold complexity via immersed surfaces. J. Knot Theory Ramif. 19(12), 1549–1569 (2010). https://doi.org/10.1142/S0218216510008558

    Article  MathSciNet  MATH  Google Scholar 

  4. Babson, E.K., Chan, C.S.: Counting faces of cubical spheres modulo two. Discrete Math. 212(3), 169–183 (2000). https://doi.org/10.1016/S0012-365X(99)00285-X. (Combinatorics and applications (Tianjin, 1996))

    Article  MathSciNet  MATH  Google Scholar 

  5. Carter, S., Kamada, S., Saito, M.: Surfaces in 4-space. Encyclopaedia of Mathematical Sciences, vol. 142. Springer, Berlin (2004). (Low-Dimensional Topology, III. MR2060067)

    MATH  Google Scholar 

  6. Fenn, R., Rourke, C.: Nice spines of \(3\)-manifolds, Topology of low-dimensional manifolds, (Proc. Second Sussex Conf., Chelwood Gate, 1977), Lecture Notes in Math., vol. 722. Springer, Berlin 1979, 31–36 (1977)

  7. Funar, L.: Cubulations, immersions, mappability and a problem of Habegger. Ann. Sci. École Norm. Sup. 32(5), 681–700 (1999). https://doi.org/10.1016/S0012-9593(01)80003-3. (English, with English and French summaries)

    Article  MathSciNet  MATH  Google Scholar 

  8. Haken, W.: Some special presentations of homotopy \(3\)-spheres, Topology Conference, (Virginia Polytech. Inst. and State Univ., Blacksburg, Va., 1973), Springer, Berlin, pp. 97–107. Lecture Notes in Math., Vol. 375 (1974)

  9. Hall Jr., M.: The theory of groups. Chelsea Publishing Co., New York (1976). (Reprinting of the 1968 edition)

    Google Scholar 

  10. Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma. Math. Ann. 110(1), 312–320 (1935). https://doi.org/10.1007/BF01448029. (German)

    Article  MathSciNet  MATH  Google Scholar 

  11. Johansson, I.: Über singuläre Elementarflächen und das Dehnsche Lemma II. Math. Ann. 115(1), 658–669 (1938). https://doi.org/10.1007/BF01448964. (German)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lozano, Á., Vigara, R.: On the subadditivity of Montesinos complexity of closed orientable 3-manifolds. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 109(2), 267–279 (2015). https://doi.org/10.1007/s13398-014-0179-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Montesinos-Amilibia, J.M.: Representing 3-manifolds by Dehn spheres, Mathematical contributions: volume in honor of Professor Joaquín Arregui Fernández (Spanish), Homen. Univ. Complut., Editorial Complutense, Madrid, pp. 239–247 (2000)

  14. Papakyriakopoulos, C.D.: On Dehn’s lemma and the asphericity of knots. Ann. Math. (2) 66, 1–26 (1957). https://doi.org/10.2307/1970113

    Article  MathSciNet  MATH  Google Scholar 

  15. Shima, A.: Immersions from the \(2\)-sphere to the \(3\)-sphere with only two triple points. Sūrikaisekikenkyūsho Kōkyūroku 1006, 146–160 (1997). (Topology of real singularities and related topics (Japanese) (Kyoto, 1997))

    MathSciNet  MATH  Google Scholar 

  16. Vigara, R.: A set of moves for Johansson representation of 3-manifolds. Fund. Math. 190, 245–288 (2006). https://doi.org/10.4064/fm190-0-10

    Article  MathSciNet  MATH  Google Scholar 

  17. Vigara, R., Lozano, Á.: Representing 3-manifolds by filling Dehn surfaces, Series on Knots and Everything, vol. 58, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2016)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvaro Lozano Rojo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by Gobierno de Aragon (Ref. Grupo Algebra y Geometría) co-funded by Feder 2014-2020 “Construyendo Europa desde Aragón”, and MINECO grants MTM2013-45710-C2-1-P, MTM2013-46337-C2-2-P, MTM2016-77642-C2-2-P and MTM2016-76868-C2-2-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lozano Rojo, Á., Vigara, R. The Triple-Point Spectrum of Closed Orientable 3-Manifolds. Mediterr. J. Math. 16, 71 (2019). https://doi.org/10.1007/s00009-019-1340-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1340-z

Keywords

Mathematics Subject Classification

Navigation