Advertisement

Improving the Approximation of the First- and Second-Order Statistics of the Response Stochastic Process to the Random Legendre Differential Equation

  • J. Calatayud
  • J.-C. CortésEmail author
  • M. Jornet
Article
  • 33 Downloads

Abstract

In this paper, we deal with uncertainty quantification for the random Legendre differential equation, with input coefficient A and initial conditions \(X_0\) and \(X_1\). In a previous study (Calbo et al. in Comput Math Appl 61(9):2782–2792, 2011), a mean square convergent power series solution on \((-1/\mathrm {e},1/\mathrm {e})\) was constructed, under the assumptions of mean fourth integrability of \(X_0\) and \(X_1\), independence, and at most exponential growth of the absolute moments of A. In this paper, we relax these conditions to construct an \(\mathrm {L}^p\) solution (\(1\le p\le \infty \)) to the random Legendre differential equation on the whole domain \((-1,1)\), as in its deterministic counterpart. Our hypotheses assume no independence and less integrability of \(X_0\) and \(X_1\). Moreover, the growth condition on the moments of A is characterized by the boundedness of A, which simplifies the proofs significantly. We also provide approximations of the expectation and variance of the response process. The numerical experiments show the wide applicability of our findings. A comparison with Monte Carlo simulations and gPC expansions is performed.

Keywords

random Legendre differential equation random power series mean square calculus uncertainty quantification 

Mathematics Subject Classification

34F05 60H10 60H35 65C05 65C60 93E03 

Notes

Acknowledgements

This work has been supported by the Spanish Ministerio de Economía y Competitividad Grant MTM2017-89664-P. Marc Jornet acknowledges the doctorate scholarship granted by Programa de Ayudas de Investigación y Desarrollo (PAID), Universitat Politècnica de València.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this article.

References

  1. 1.
    Soong, T.T.: Random Differential Equations in Science and Engineering. Academic Press, New York (1973)zbMATHGoogle Scholar
  2. 2.
    Strand, J.L.: Random ordinary differential equations. J. Differ. Equ. 7(3), 538–553 (1970)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Smith, R.C.: Uncertainty quantification. Theory, implementation, and application. SIAM Comput. Sci. Eng. New York (2013) ISBN 9781611973211Google Scholar
  4. 4.
    Fishman, G.: Monte Carlo: Concepts, Algorithms, and Applications. Springer, Berlin (2013)zbMATHGoogle Scholar
  5. 5.
    Cortés, J.-C., Romero, J.-V., Roselló, M.-D., Santonja, F.-J., Villanueva, R.-J.: Solving continuous models with dependent uncertainty: a computational approach. Abstr. Appl. Anal. 2013, 983839 (2013).  https://doi.org/10.1155/2013/983839 MathSciNetGoogle Scholar
  6. 6.
    Xiu, D.: Numerical Methods for Stochastic Computations. A Spectral Method Approach. Cambridge Texts in Applied Mathematics. Princeton University Press, New York (2010)Google Scholar
  7. 7.
    El-Tawil, M.A.: The approximate solutions of some stochastic differential equations using transformations. Appl. Math. Comput. 164(1), 167–178 (2005)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Cortés, J.-C., Sevilla-Peris, P., Jódar, L.: Constructing approximate diffusion processes with uncertain data. Math. Comput. Simul. 73(1–4), 125–132 (2006)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Cortés, J.-C., Jódar, L., Villafuerte, L., Villanueva, R.-J.: Computing mean square approximations of random diffusion models with source term. Math. Comput. Simul. 76(1–3), 44–48 (2007)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Khodabin, M., Maleknejad, K., Rostami, M., Nouri, M.: Numerical solution of stochastic differential equations by second order Runge–Kutta methods. Math. Comput. Model. 53(9–10), 1910–1920 (2011)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Nouri, K., Ranjbar, H.: Mean square convergence of the numerical solution of random differential equations. Mediterran. J. Math. 12(3), 1123–1140 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Nouri, N.: Study on stochastic differential equations via modified Adomian decomposition method. U.P.B. Sci. Bull. Ser. A 78(1), 81–90 (2016)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Khodabin, M., Rostami, M.: Mean square numerical solution of stochastic differential equations by fourth order Runge–Kutta method and its application in the electric circuits with noise. Adv. Differ. Equ. 623, 1–19 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Díaz-Infante, S., Jerez, S.: Convergence and asymptotic stability of the explicit Steklov method for stochastic differential equations. J. Comput. Appl. Math. 291(1), 36–47 (2016)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Soheili, Ali R, Toutounian, F., Soleymani, F.: A fast convergent numerical method for matrix sign function with application in SDEs (Stochastic Differential Equations). J. Comput. Appl. Math. 282, 167–178 (2015)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Øksendal, B.: Stochastic Differential Equations. Springer, Berlin (2003)zbMATHGoogle Scholar
  17. 17.
    Villafuerte, L., Braumann, C.A., Cortés, J.-C., Jódar, L.: Random differential operational calculus: theory and applications. Comput. Math. Appl. 59(1), 115–125 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Licea, J., Villafuerte, L., Chen-Charpentier, B.M.: Analytic and numerical solutions of a Riccati differential equation with random coefficients. J. Comput. Appl. Math. 309(1), 208–219 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Cortés, J.-C., Jódar, L., Camacho, J., Villafuerte, L.: Random Airy type differential equations: mean square exact and numerical solutions. Comput. Math. Appl. 60(5), 1237–1244 (2010)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Calbo, G., Cortés, J.-C., Jódar, L.: Random Hermite differential equations: mean square power series solutions and statistical properties. Appl. Math. Comput. 218(7), 3654–3666 (2011)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Calbo, G., Cortés, J.-C., Jódar, L., Villafuerte, L.: Solving the random Legendre differential equation: mean square power series solution and its statistical functions. Comput. Math. Appl. 61(9), 2782–2792 (2011)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Cortés, J.C., Jódar, L., Villafuerte, L.: Mean square solution of Bessel differential equation with uncertainties. J. Comput. Appl. Math. 309(1), 383–395 (2017)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Golmankhaneh, A.K., Porghoveh, N.A., Baleanu, D.: Mean square solutions of second-order random differential equations by using homotopy analysis method. Roman. Rep. Phys. 65(2), 350–362 (2013)Google Scholar
  24. 24.
    Khudair, A.K., Ameen, A.A., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using Adomian decomposition method. Appl. Math. Sci. 51(5), 2521–2535 (2011)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Khudair, A.K., Haddad, S.A.M., Khalaf, S.L.: Mean square solutions of second-order random differential equations by using the differential transformation method. Open J. Appl. Sci. 6, 287–297 (2016)Google Scholar
  26. 26.
    Norman, L., Kotz, S., Balakrishnan, N.: Continuous Univariate Distributions, vol. 1. Wiley, Oxford (1994)zbMATHGoogle Scholar
  27. 27.
    Ernst, O.G., Mugler, A., Starkloff, H.-J., Ullmann, E.: On the convergence of generalized polynomial chaos expansions. ESAIM Math. Modell. Num. Anal. 46(2), 317–339 (2012)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Shi, W., Zhang, C.: Error analysis of generalized polynomial chaos for nonlinear random ordinary differential equations. Appl. Num. Math. 62(12), 1954–1964 (2012)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Calatayud, J., Cortés, J.-C., Jornet, M.: On the convergence of adaptive gPC for non-linear random difference equations: theoretical analysis and some practical recommendations. J. Nonlinear Sci. Appl. 11(9), 1077–1084 (2018)MathSciNetGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Instituto Universitario de Matemática Multidisciplinar, Building 8G, access C, 2nd floorUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations