On the Normality of a Class of Monomial Ideals via the Newton Polyhedron

  • Ibrahim Al-AyyoubEmail author
  • Imad Jaradat
  • Khaldoun Al-Zoubi


Let \(I=\left\langle x_{1}^{a_{1}},\ldots ,x_{n}^{a_{n}}\right\rangle \subset R=K[x_{1},\ldots ,x_{n}]\) with \(a_{1},\ldots ,a_{n}\) positive integers and K a field, and let J be the integral closure of I. A criterion for the normality of J is developed. This criterion is used to show that J is normal if and only if the integral closure of the ideal \(\langle x_{1}^{b_{1}},\ldots ,x_{n}^{b_{n}},\ldots ,x_{r}^{b_{r}}\rangle \subset R[x_{n+1},\ldots ,x_{r}]\) is normal, where \(b_{i}\in \left\{ a_{1},\ldots ,a_{n}\right\} \) for all i, this generalizes the work of Al-Ayyoub (Rocky Mt Math 39(1):1–9, 2009). If \(l=lcm (a_{1},\ldots ,a_{n})\) and the integral closure of \(\left\langle x_{1}^{a_{1}},\ldots ,x_{n}^{a_{n}},x_{n+1}^{l}\right\rangle \subset R[x_{n+1}]\) is not normal, then we show that the integral closure of \(\left\langle x_{1}^{a_{1}},\ldots ,x_{n}^{a_{n}},x_{n+1}^{s}\right\rangle \) is not normal for any \(s>l\). Also, we give a shorter proof of a main result of Coughlin (Classes of Normal Monomial Ideals. Ph.D. thesis, 2004).


Newton polyhedron lattice points integral closure normal ideals convex hull 

Mathematics Subject Classification

13B22 06B10 52B20 



The authors are grateful to professor Irena Swanson for the advice throughout the course of this research and for the Macaulay2 code.


  1. 1.
    Al-Ayyoub, I.: Normality of monomial ideals. Rocky Mt. J. Math. 39(1), 1–9 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Al-Ayyoub, I.: Results on the Ratliff-Rush closure and the integral closedness of powers of certain monomial curves. Commun. Algebra 38(12), 4553–4568 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bruns, W., Ichim, B., Römer, T., Sieg, R., Sö ger, C.: Normaliz. Algorithms for rational cones and affine monoids. Available at
  4. 4.
    Corso, A., Huneke, C., Vasconcelos, W.: On the integral closure of ideals. Manuscripta Math. 95, 331–347 (1998)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Coughlin, H.: Classes of Normal Monomial Ideals. Ph.D. thesis, University of Oregon, Eugene, OR (2004)Google Scholar
  6. 6.
    Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative Algebra. Springer, Berlin (2002)CrossRefGoogle Scholar
  7. 7.
    Herzog, J., Hibi, T.: Monomial Ideals. Graduate text in Mathematics 206. Springer, Berlin (2011)Google Scholar
  8. 8.
    Lindner, M., Roch, S.: On the integer points in a lattice polytope: n-fold Minkowski sum and boundary. Beitr. Algebra Geom. 52, 395 (2011). MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Reid, L., Roberts, L.G., Vitulli, M.A.: Some results on normal homogeneous ideals. Commun. Algebra 31, 4485–4506 (2003)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Swanson, I., Huneke, C.: Integral Closure of Ideals, Rings, and Modules. Cambridge University Press, Cambridge (2006)zbMATHGoogle Scholar
  11. 11.
    Villarreal, R.H.: Monomial Algebras. Monographs and Research Notes in Mathematics, 2nd edn. CRC Press, Boca Raton (2015)Google Scholar
  12. 12.
    Vitulli, M.A.: Some normal monomial ideals. Contemp. Math. Am. Math. Soc. Provid. 324, 205–217 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Vitulli, M.A.: Weak normalization and weak subintegral closure, “Singularities in algebraic and analytic geometry”. Contemp. Math. 266, 11–22 (2000)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vitulli, M.A.: On normal monomial ideals, “Topics in algebraic and noncommutative geometry”. Contemp. Math. 324, 205–218 (2003)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Zariski, O., Samuel, P.: Commutative Algebra, vol. 2. D. Van Nostrand Co., Inc., Princeton (1960)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Mathematics and StatisticsJordan University of Science and TechnologyIrbidJordan

Personalised recommendations