Skip to main content
Log in

Fixed Point Theorems for Multi-valued Nonexpansive Mappings in Banach Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript


In this paper, we present new fixed point theorems for multivalued nonexpansive mappings. Since Banach space can have any geometric structure, we consider mappings such that their perturbation by the identity operator is expansive. Then we derive some fixed point results including existence theorems for the sum and product of some classes of nonlinear operators. Three illustrating examples for functional and differential inclusions are supplied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. Aubin, J., Cellina, A.: Differential inclusions. Set-valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften, vol. 264. Springer, Berlin (1984)

    Google Scholar 

  2. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  Google Scholar 

  3. Chang, T.H., Yen, C.L.: Some fixed point theorems in Banach space. J. Math. Anal. Appl. 138(2), 550–558 (1989)

    Article  MathSciNet  Google Scholar 

  4. Covitz, H., Nadler, S.B.: Multi-valued contraction mappings in generalized metric space. Isr. J. Math. 8, 5–11 (1970)

    Article  MathSciNet  Google Scholar 

  5. Deimling, K.: Multivalued Differential Equations, Walter de Gruyter Series in Nonlinear Analysis and Applications, vol. 1. Walter de Gruyter Co., Berlin (1992)

    Google Scholar 

  6. Dhage, B.C.: Multi-valued operators and fixed point theorems in Banach algebras. I. Taiwan. J. Math. 10(4), 1025–1045 (2006)

    Article  MathSciNet  Google Scholar 

  7. Dhage, B.C.: Multi-valued mappings and fixed points. II. Tamkang J. Math. 37(1), 27–46 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Djebali, S.: Fixed point theory for \(1\)-set contractions: a survey, applied mathematics in Tunisia. In: Proceedings of the International Conference on Advances in Applied Mathematics (ICAAM), Hammamet, Tunisia, December 2013. Series. Springer Proceedings in Mathematics & Statistics, vol. 131, pp. 53–10. Springer-Birkhäuser (2015)

  9. Djebali, S., Hammache, K.: Furi-Pera fixed point theorems in Banach algebras with applications. Acta Univ. Palacki. Olomuc Fac. rer. nat. Math. 47, 55–75 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Djebali, S., Hammache, K.: Fixed point theorems for nonexpansive maps in Banach spaces. Nonlinear Anal. 73(10), 3440–3449 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dominguez Benavides, T., Lorenzo Ramirez, P.: Fixed-point theorems for multivalued non-expansive mappings without uniform convexity. Abstr. Appl. Anal. 6, 375–386 (2003)

    Article  MathSciNet  Google Scholar 

  12. Garcia-Falset, J.: Existence of fixed points for the sum of two operators. Math. Nachr. 283(12), 1736–1757 (2010)

    Article  MathSciNet  Google Scholar 

  13. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics, vol. 83. Marcel Dekker, New York (1984)

    Google Scholar 

  14. Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings, Fixed Point Theory and Applications, vol. 4. Springer, Dordrecht (2006)

    MATH  Google Scholar 

  15. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  Google Scholar 

  16. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis, vol. I. Theory, Mathematics and its Applications, vol. 419. Kluwer Academic Publishers, Dordrecht (1997)

    Book  Google Scholar 

  17. Kirk, W.A., Massera, S.: Remarks on asymptotic and Chebyshev centers. Houst. J. Math. 16, 357–364 (1990)

    MathSciNet  MATH  Google Scholar 

  18. Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Pol. Sci. Ser. Sci. Math. Astronom. Phys. 13, 781–786 (1965)

    MathSciNet  MATH  Google Scholar 

  19. Lim, T.C.: A fixed point theorem for multivalued nonexpansive mappings in an uniformly convex Banach space. Bull. Am. Math. Soc. 80(6), 1123–1126 (1974)

    Article  MathSciNet  Google Scholar 

  20. Nussbaum, R.D.: The fixed point index and asymptotic fixed point theorems for \(k\)-set contractions. Bull. Am. Math. Soc. 75, 490–495 (1969)

    Article  MathSciNet  Google Scholar 

  21. Petryshyn, W.V.: Remarks on condensing and \(k\)-set-contractive mappings. J. Math. Anal. Appl. 39, 717–741 (1972)

    Article  MathSciNet  Google Scholar 

  22. Petryshyn, W.V., Fitzpatrick, P.M.: A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact mappings. Trans. Am. Math. Soc. 194, 1–25 (1974)

    Article  MathSciNet  Google Scholar 

  23. Rybinski, L.E.: An application of the continuous selection theorem to the study of the fixed points of multivalued mappings. J. Math. Anal. Appl. 153(2), 391–396 (1990)

    Article  MathSciNet  Google Scholar 

  24. Xu, H.K.: Multivalued nonexpansive mappings in Banach spaces. Nonlinear Anal. 43(6), 693–706 (2001)

    Article  MathSciNet  Google Scholar 

Download references


The authors would like to thank the anonymous referee for his/her careful reading of the original manuscript which led to substantial improvement of the paper.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Smaïl Djebali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bounegab, Z., Djebali, S. Fixed Point Theorems for Multi-valued Nonexpansive Mappings in Banach Spaces. Mediterr. J. Math. 16, 49 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Mathematics Subject Classification