Skip to main content
Log in

Existence and Multiplicity Results for an Elliptic Problem Involving Cylindrical Weights and a Homogeneous Term \(\mu \)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the following elliptic problem

$$\begin{aligned} \left\{ \begin{array}{lll} -{\text {div}}\left( \dfrac{\left| \nabla u\right| ^{p-2} \nabla u}{\left| y\right| ^{ap}}\right) = \mu \dfrac{\left| u\right| ^{p-2} u}{\left| y\right| ^{p(a+1)}}+ h(x) \dfrac{\left| u\right| ^{q-2} u}{\left| y\right| ^{bq}} + f(x,u) &{}&{} \text{ in } \ \Omega , \\ u = 0 &{}&{} \text{ on } \ \partial \Omega ,\\ \end{array} \right. \end{aligned}$$

in an unbounded cylindrical domain

$$\begin{aligned} \Omega :=\{ (y,z)\in {\mathbb {R}}^{m+1}\times {\mathbb {R}}^{N-m-1} \ ; \ 0<A<\left| y\right|<B <\infty \}, \end{aligned}$$

where \(A,B\in {\mathbb {R}}_+\), \(p>1\), \(1\le m<N-p\), \(q:=\dfrac{Np}{N-p (a+1-b)},\) \(0\le \mu < {\overline{\mu }}:=\left( \dfrac{m+1-p(a+1)}{p}\right) ^p \), \(h\in L^{\frac{N}{q}}(\Omega )\cap L^{\infty }(\Omega )\) is a positive function and \(f: \Omega \times {\mathbb {R}}\rightarrow {\mathbb {R}}\) is a Carathéodory function with growth at infinity. Using the Krasnoselski’s genus and applying \({\mathbb {Z}}_2\) version of the Mountain Pass Theorem, we prove, under certain assumptions about f, that the above problem has infinite invariant solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, A.R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Ambrosetti, A., Brézis, H., Cerami, G.: Combined effects of concave and convex nonlinearities in some elliptic problems. J. Funct. Anal. 2, 519–543 (1994)

    Article  MathSciNet  Google Scholar 

  3. Assunção, RB., dos Santos, WW., Miyagaki, OH.: Existence and multiplicity results on a class of quasilinear elliptic problems with cylindrical singularities involving multiple critical exponents. arXiv: 1506.09162 [math.AP] (2015)

  4. Assunção, RB., dos Santos, WW., Miyagaki, OH.: Quasilinear elliptic problems with cylindrical singularities and multiple critical nonlinearities: existence, regularity, nonexistence. arXiv:1506.09152 [math.AP] (2015)

  5. Assunção, R.B., Miyagaki, O.H., Rodrigues, B.M.: Existence and multiplicity of solutions for a supercritical elliptic problem in unbounded cylinders. Bound. Value Probl. 2017, 52 (2017)

  6. Badiale, M., Serra, E.: Semilinear Elliptic Equations for Beginners. Existence Results via the Variational Approach. Springer, London (2011)

    Book  Google Scholar 

  7. Badiale, M., Tarantello, G.: A Sobolev-Hardy inequality whith applications to a nonlinear elliptic equation arising in astrophysics. Arch. Ration. Mech. Anal. 163, 259–293 (2002)

    Article  MathSciNet  Google Scholar 

  8. Bartle, R.: The Elements of Integration and Lebesgue Measure. Wiley-Interscience, Hoboken (1995)

    Book  Google Scholar 

  9. Bhakta, M.: On the existence and breaking symmetry of the ground state solution of Hardy Sobolev type equations with weighted p-Laplacian. Adv. Nonlinear Stud. 3, 555–568 (2012)

    MathSciNet  MATH  Google Scholar 

  10. Bouchekif, M., El Mokhtar, M.E.M.O.: Nonhomogeneous elliptic equations with decaying cylindrical potential and critical exponent. Electron. J. Differ. Equ. 54, 1–10 (2011)

    Article  MathSciNet  Google Scholar 

  11. Bouchekif, M., Matallah, A.: Multiple positive solutions for elliptic equations involving a concave term and critical Sobolev-Hardy exponent. Appl. Math. Lett. 22, 268–275 (2009)

    Article  MathSciNet  Google Scholar 

  12. Cao, D., Han, P.: Solutions for semilinear elliptic equations with critical exponents and Hardy potential. J. Differ. Equ. 2, 521–537 (2004)

    Article  MathSciNet  Google Scholar 

  13. Chen, J.: Multiple positive solutions for a class of nonlinear elliptic equations. J. Math. Anal. Appl. 2, 341–354 (2004)

    Article  MathSciNet  Google Scholar 

  14. Clapp, M., Szulkin, A.: A supercritical elliptic problem in a cylindrical shell. Prog. Nonlinear Differ. Equ. Appl. 85, 233–242 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology I: Physical Origins and Classical Methods. Springer, Berlin (1985)

    MATH  Google Scholar 

  16. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  Google Scholar 

  17. Fan, X.L., Zhao, Y.Z.: Linking and multiplicity results for the p-Laplacian on unbounded cylinders. J. Math. Anal. Appl. 260, 479–489 (2001)

    Article  MathSciNet  Google Scholar 

  18. Ferrero, A., Gazzola, F.: Existence of solutions for singular critical growth semilinear elliptic equations. J. Differ. Equ. 2, 494–522 (2001)

    Article  MathSciNet  Google Scholar 

  19. Filippucci, R., Pucci, P., Robert, F.: On a p-Laplace equation with multiple critical nonlinearities. J. Math. Pures Appl. 9, 156–177 (2009)

    Article  MathSciNet  Google Scholar 

  20. García, A., Peral, A.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Am. Math. Soc. 2, 877–895 (1991)

    Article  MathSciNet  Google Scholar 

  21. Gazzini, M., Musina, R.: On a Sobolev-type inequality related to the weighted p-Laplace operator. J. Math. Anal. Appl. 1, 99–111 (2009)

    Article  MathSciNet  Google Scholar 

  22. Ghergu, M., Radulescu, V.: Singular elliptic problems with lack of compactness. Ann. Mat. Pura Appl. 4, 63–79 (2006)

    Article  MathSciNet  Google Scholar 

  23. Ghergu, M., Radulescu, V.: Nonlinear PDEs, Mathematical models in biology, chemistry and population genetics. Springer, Berlin (2012)

    MATH  Google Scholar 

  24. Ghoussoub, N., Robert, F.: Concentration estimates for Emden-Fowler equations with boundary singularities and critical growth. Int. Math. Res. Pap. 21867, 1–85 (2006)

  25. Ghoussoub, N., Yuan, C.: Multiple solutions for quasi-linear PDEs involving the critical Sobolev and Hardy exponents. Trans. Am. Math. Soc. 12, 5703–5743 (2000)

    Article  MathSciNet  Google Scholar 

  26. Hsu, T.S.: Multiplicity results for p -Laplacian with critical nonlinearity of concave-convex type and sign-changing weight functions. Abstr. Appl. Anal. 2009, 1–24 (2009)

    Article  Google Scholar 

  27. Hsu, T.S.: Multiple positive solutions for a quasilinear elliptic problem involving critical Sobolev-Hardy exponents and concave-convex nonlinearities. Nonlinear Anal. 12, 3934–3944 (2011)

    Article  MathSciNet  Google Scholar 

  28. Hsu, T.S., Lin, H.L.: Multiple positive solutions for singular elliptic equations with concave-convex nonlinearities and sign-changing weights. Bound. Value Probl. 2009, 1–17 (2009)

    MathSciNet  MATH  Google Scholar 

  29. Hsu, T.S., Lin, H.L.: Multiple positive solutions for singular elliptic equations with weighted Hardy terms and critical Sobolev–Hardy exponents. Proc. Roy. Soc. Edinb. Sect. A. 3, 617–633 (2010)

    Article  MathSciNet  Google Scholar 

  30. Hsu, T.S., Lin, H.L.: Multiplicity of positive solutions for weighted quasilinear elliptic equations involving critical Hardy-Sobolev exponents and concave-convex nonlinearities. Abstr. Appl. Anal. 1–1 (2012)

    Article  MathSciNet  Google Scholar 

  31. Kang, D., Peng, S.: Solutions for semilinear elliptic problems with critical Sobolev-Hardy exponents and Hardy potential. Appl. Math. Lett. 10, 1094–1100 (2005)

    Article  MathSciNet  Google Scholar 

  32. Kavian, O.: Introduction à la Théorie des Points Critiques. Springer, Paris (1993)

    MATH  Google Scholar 

  33. Kesavan, S.: Nonlinear Functional Analysis. A First Course. Hindustan Book Agency, Gurgaon (2004)

    Book  Google Scholar 

  34. Lao, Y.S.: Nonlinear p-Laplacian problems on unbounded domains. Proc. Am. Math. Soc. 115, 1037–1045 (1992)

    MathSciNet  MATH  Google Scholar 

  35. Lions, L.P.: Symmétrie et compacité dans les espaces sobolev. J. Funct. Anal. 49, 315–334 (1982)

    Article  MathSciNet  Google Scholar 

  36. Palais, S.R.: The principle of symmetric criticality. Commun. Math. Phys. 69, 19–30 (1979)

    Article  MathSciNet  Google Scholar 

  37. Rabinowtitz, P.H.: Minimax Methods in Critical Point Theory with Applications to Differential Equations. Amer. Math. Soc, Providence, Rhode Island (1986)

  38. Secchi, S., Smets, D., Willem, M.: Remarks on a Hardy-Sobolev inequality. C. R. Math. Acad. Sci. 10, 811–815 (2003)

    Article  MathSciNet  Google Scholar 

  39. Sun, X.: p-Laplace equations with multiple critical exponents and singular cylindrical potential. Acta Math. Sci. Ser. B Engl. Ed. 4, 1099–1112 (2013)

    Article  MathSciNet  Google Scholar 

  40. Tarantello, G.: On nonhomogeneous elliptic equations involving critical Sobolev exponent. Ann. Inst. H. Poincaré Anal. Non Linéaire 3, 281–304 (1992)

    Article  MathSciNet  Google Scholar 

  41. Wang, L., Wei, Q., Kang, D.: Multiple positive solutions for p-Laplace elliptic equations involving concave-convex nonlinearities and a Hardy-type term. Nonlinear Anal. 2, 626–638 (2011)

    Article  MathSciNet  Google Scholar 

  42. Willem, M.: Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications. Birkh\(\ddot{\text{a}}\)user, Boston (1996)

  43. Xuan, B., Wang, J.: Existence of a nontrivial weak solution to quasilinear elliptic equations with singular weights and multiple critical exponents. Nonlinear Anal. 3649–3658 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

O.H. Miyagaki received research grants from CNPq/Brazil Proc.304015/2014-8, FAPEMIG/Brazil CEX APQ-00063/15 and INCTMAT/CNPq/Brazil.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. Rodrigues.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

All authors declare that they contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assunção, R.B., Miyagaki, O.H., Paes-Leme, L.C. et al. Existence and Multiplicity Results for an Elliptic Problem Involving Cylindrical Weights and a Homogeneous Term \(\mu \). Mediterr. J. Math. 16, 33 (2019). https://doi.org/10.1007/s00009-019-1317-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1317-y

Keywords

Mathematics Subject Classification

Navigation