Skip to main content
Log in

BSE-Property for Some Certain Segal and Banach Algebras

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

For a commutative semi-simple Banach algebra A which is an ideal in its second dual, we give a necessary and sufficient condition for an essential abstract Segal algebra in A to be a BSE-algebra. We show that a large class of abstract Segal algebras in the Fourier algebra A(G) of a locally compact group G are BSE-algebra if and only if they have bounded weak approximate identities. In addition, in the case that G is discrete, we show that \(A_{\mathrm{cb}}(G)\) is a BSE-algebra if and only if G is weakly amenable. We study the BSE-property of some certain Segal algebras implemented by local functions that were recently introduced by J. Inoue and S.-E. Takahasi. Finally, we give a similar construction for the group algebra implemented by a measurable and sub-multiplicative function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burnham, J.T.: Closed ideals in subalgebras of Banach algebras I. Proc. Am. Math. Soc. 32, 551–555 (1972)

    Article  MathSciNet  Google Scholar 

  2. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  3. Dales, H.G.: Banach Algebras and Automatic Continuity. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  4. Duncan, J., Hosseiniun, S.A.R.: The second dual of a Banach algebra. Proc. R. Soc. Edinb. Sect. 84, 309–325 (1979)

    Article  MathSciNet  Google Scholar 

  5. Effros, E .G., Ruan, Z.-J.: Operator Spaces. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  6. Forrest, B.: Arens regularity and discrete groups. Pacific J. Math. 151(2), 217–227 (1991)

    Article  MathSciNet  Google Scholar 

  7. Forrest, B.: Some Banach algebras without discontinuous derivations. Proc. Am. Math. Soc. 114(4), 965–970 (1992)

    Article  MathSciNet  Google Scholar 

  8. Forrest, B.E.: Completely bounded multipliers and ideals in \(A(G)\) vanishing on closed subgroups. Contemp. Math. 363, 89–94 (2004)

    Article  MathSciNet  Google Scholar 

  9. Forrest, B.E., Runde, V., Spronk, N.: Operator amenability of the Fourier algebra in the \(cb\)-multiplier norm. Can. J. Math. 59, 966–980 (2007)

    Article  MathSciNet  Google Scholar 

  10. Inoue, J., Takahasi, S.-E.: Constructions of bounded weak approximate identities for Segal algebras on LCA groups. Acta Sci. Math. (Szeged) 66, 257–271 (2000)

    MathSciNet  MATH  Google Scholar 

  11. Inoue, J., Takahasi, S.-E.: Segal algebras in commutative Banach algebras. Rocky Mt. J. Math. 44(2), 539–589 (2014)

    Article  MathSciNet  Google Scholar 

  12. Jones, C.A., Lahr, C.D.: Weak and norm approximate identities are different. Pacific J. Math. 72(1), 99–104 (1977)

    Article  MathSciNet  Google Scholar 

  13. Kamali, Z., Bami, M.L.: The Bochner–Schoenberg–Eberlein property for \({L}^{1}(\mathbb{R}^{+})\). J. Fourier Anal. Appl. 20(2), 225–233 (2014)

    Article  MathSciNet  Google Scholar 

  14. Kaniuth, E.: A Course in Commutative Banach Algebras. Graduate texts in mathematics. Springer, New York (2009)

    Book  Google Scholar 

  15. Kaniuth, E., Ülger, A.: The Bochner–Schoenberg–Eberlein property for commutative Banach algebras, especially Fourier and Fourier Stieltjes algebras. Trans. Am. Math. Soc. 362, 4331–4356 (2010)

    Article  MathSciNet  Google Scholar 

  16. Laali, J., Fozouni, M.: On \(\Delta \)-weak \(\phi \)-amenable Banach algebras, U. P. B. Sci. Bull. Ser. A 77(4), 165–176 (2015)

    MATH  Google Scholar 

  17. Nemati, M.: On generalized notions of amenability and operator homology of the Fourier algebra. Quart. J. Math. 68(3), 781–789 (2017)

    Article  MathSciNet  Google Scholar 

  18. Sakai, S.: Weakly compact operators on operators algebra. Pacific J. Math. 14(2), 659–664 (1964)

    Article  MathSciNet  Google Scholar 

  19. Samei, E., Spronk, N., Stokke, R.: Biflatness and pseudo-amenability of Segal algebras. Can. J. Math. 62, 845–869 (2010)

    Article  MathSciNet  Google Scholar 

  20. Takahasi, S.-E., Hatori, O.: Commutative Banach algebras which satisfy a Bochner–Schoenberg–Eberlein-type theorem. Proc. Am. Math. Soc. 110, 149–158 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her suggestions and comments which improved the presentation of the paper especially, giving a shorter proof for Theorem 2.1. The first named author of the paper supported partially by a grant from Gonbad Kavous University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Fozouni.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fozouni, M., Nemati, M. BSE-Property for Some Certain Segal and Banach Algebras. Mediterr. J. Math. 16, 38 (2019). https://doi.org/10.1007/s00009-019-1305-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-019-1305-2

Mathematics Subject Classification

Keywords

Navigation