Skip to main content

An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method

Abstract

The main purpose of this work is to obtain the numerical solutions for the Kawahara equation via the Crank–Nicolson–Differential Quadrature Method based on modified cubic B-splines (MCBC-DQM). First, the Kawahara equation has been discretized using Crank–Nicolson scheme. Then, Rubin and Graves linearization technique has been utilized and differential quadrature method has been applied to obtain algebraic equation system. Four different test problems, namely single solitary wave, interaction of two solitary waves, interaction of three solitary waves, and wave generation, have been solved. Next, to be able to test the efficiency and accuracy of the newly applied method, the error norms \( L _{2}\) and \( L _{\infty }\) as well as the three lowest invariants \( I _{1}\), \( I _{2}\), and \( I _{3}\) have been computed. Besides those, the relative changes of invariants have been reported. Finally, the newly obtained numerical results have been compared with some of those available in the literature for similar parameters. The comparison of present results with earlier works showed that the newly method may be provide significant benefit in case of numerical solutions of the other nonlinear differential equations.

This is a preview of subscription content, access via your institution.

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, nonlinear evolution equations and inverse scattering form. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  2. Ablowitz, M.J., Segur, H.: Solitons and inverse scattering transformation. SIAM, Philadelphia (1981)

    Book  MATH  Google Scholar 

  3. Rashidi, M.M., Domairry, G., Dinarvand, S.: Approximate solutions for the Burger and regularized long wave equations by means of the homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 14, 708717 (2009)

    Google Scholar 

  4. Rashidi, M.M., Mohimanian Pour, S.A., Hayat, T., Obaidat, S.: Analytic approximate solutions for steady flow over a rotating disk in porous medium with heat transfer by homotopy analysis method. Comput. Fluids 54, 19 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Rashidi, M.M., Freidoonimehr, N., Hosseini, A., Anwar Beg, O., Hung, T.-K.: Homotopy simulation of nanofluid dynamics from a non-linearly stretching isothermal permeable sheet with transpiration. Meccanica 49, 469482 (2014)

    Article  MATH  Google Scholar 

  6. Zabusky, N.J., Kruskal, M.D.: Interaction of solitons in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)

    Article  MATH  Google Scholar 

  7. Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33, 260–264 (1972)

    Article  Google Scholar 

  8. Yamamoto, Y., Takizawa, E.I.: On a solution on nonlinear time evolution equation of fifth order. J. Phys. Soc. Jpn. 50, 1421–1422 (1981)

    Article  MathSciNet  Google Scholar 

  9. Boyd, J.P.: Weakly non-local solitons for capillary-gravity waves: fifth degree Korteweg-de Vries equation. Phys. D 48(2), 129–146 (1991)

    Article  MATH  Google Scholar 

  10. Pomeau, Y., Ramani, A., Grammaticos, B.: Structural stability of the Korteweg-de Vries solitons under a singular perturbation. Phys. D 31, 127–134 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Djidjeli, K., Price, W.G., Twizell, E.H., Wand, Y.: Numerical methods for the solution of the third- and fifth-order dispersive Kortewege-de Vries equations. J. Comput. Appl. Math. 58, 307–336 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kaya, D.: An explicit and numerical solutions of some fifth-order KdV equation by decomposition method. Appl. Math. Comput. 144, 353–363 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Berloff, N.G., Howard, L.N.: Solitary and periodic solutions to nonlinear nonintegrable equations. Stud. Appl. Math. 99, 1–24 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Bridges, T., Derks, G.: Linear instability of solitary wave solutions of the Kawahara equation and its generalizations. SIAM J. Math. Anal. 33(6), 1356–1378 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Karpman, V.I., Vanden-Broeck, J.-M.: Stationary solitons and stabilization of the collapse described by KdV-type equations with high nonlinearities and dispersion. Phys. Lett. A 200, 423–428 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wazwaz, A.: Compacton solutions of the Kawahara-type nonlinear dispersive equation. Appl. Math. Comput. 145, 133–150 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Coclite, G.M., di Ruvo, L.: A singular limit problem for conservation laws related to the Kawahara equation. Bull. Sci. Math. 140, 303–338 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Coclite, G.M., di Ruvo, L.: A singular limit problem for conservation laws related to the Kawahara-Korteweg-de Vries equation. Netw. Heterog. Media. 11(2), 281–300 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Coclite, G.M., di Ruvo, L.: Convergence results related to the modified Kawahara equation. Boll. Unione Mat. Ital. 9(8), 265–286 (2016). https://doi.org/10.1007/s40574-015-0043-z

    Article  MathSciNet  MATH  Google Scholar 

  20. Koley, U.: Error estimate for a fully discrete spectral scheme for Korteweg-de Vries-Kawahara equation. Cent. Eur. J. Math. 10(1), 173–187 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Koley, U.: Finite difference schemes for the Korteweg-de Vries-Kawahara equation. Int. J. Numer. Anal. Model. 13(3), 344–367 (2016)

    MathSciNet  MATH  Google Scholar 

  22. Yusufoğlu, E., Bekir, A.: Symbolic computation and new families of exact travelling solutions for the Kawahara and modified Kawahara equations. Comput. Math. Appl. 55, 1113–1121 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fan, E.: Extended tanh-function method and its applications to nonlinear equations. Phys. Lett. A 277, 212–218 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wazwaz, A.: New solitary wave solutions to the Kuramoto-Sivashinsky and the Kawahara equations. Appl. Math. Comput. 182, 1642–1650 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Yusufoğlu, E., Bekir, A., Alp, M.: Periodic and solitary wave solutions of Kawahara and modified Kawahara equations by using Sine–Cosine method. Chaos Solitons Fractals 37, 1193–1197 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Abbasbandy, S.: Homotopy analysis method for the Kawahara equation. Nonlinear Anal Real World Appl 11, 307–312 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Parkes, E.J., Duffya, B.R., Abbott, P.C.: The Jacobi elliptic-function method for finding periodic-wave solutions to nonlinear evolution equations. Phys. Lett. A 295, 280–286 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kaya, D., Al-Khaled, K.: A numerical comparison of a Kawahara equation. Phys. Lett. A 363, 433–439 (2007)

    Article  MATH  Google Scholar 

  29. Karakoç, B.G., Zeybek, H., Ak, T.: Numerical solutions of the Kawahara equation by the septic B-spline collocation method. Stat. Optim. Inf. Comput. 2, 211–221 (2014)

    Article  MathSciNet  Google Scholar 

  30. Korkmaz, A., Dağ, I.: Crank-Nicolson-Differential quadrature algorithms for the Kawahara equation. Chaos Solitons Fractals 42, 65–73 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bibi, N., Tirmizi, S.I.A., Haq, S.: Meshless method of lines for numerical solution of Kawahara type equations. Appl. Math. 2, 608–618 (2011)

    Article  MathSciNet  Google Scholar 

  32. Lahiji, M.A., Abdul Aziz, Z.: Numerical solution for Kawahara equation by using spectral methods. IERI Procedia 10, 259–265 (2014)

    Article  Google Scholar 

  33. Shu, C.: Differential quadrature and its application in engineering. Springer, London (2000)

    Book  MATH  Google Scholar 

  34. Bellman, R., Kashef, B.G., Casti, J.: Differential quadrature: a tecnique for the rapid solution of nonlinear differential equations. J. Comput. Phys. 10, 40–52 (1972)

    Article  MATH  Google Scholar 

  35. Shu, C., Wu, Y.L.: Integrated radial basis functions-based differential quadrature method and its performance. Int. J. Numer. Meth. Fluids 53, 969–984 (2007)

    Article  MATH  Google Scholar 

  36. Striz, A.G., Wang, X., Bert, C.W.: Harmonic differential quadrature method and applications to analysis of structural components. Acta Mech. 111, 85–94 (1995)

    Article  MATH  Google Scholar 

  37. Korkmaz, A., Dağ, I.: Shock wave simulations using Sinc differential quadrature method. Int. J. Comput. Aided Eng. Softw. 28(6), 654–674 (2011)

    Article  MATH  Google Scholar 

  38. Karakoc, S.B.G., Başhan, A., Geyikli, T.: Two Different Methods for Numerical Solution of the Modified Burgers’ Equation, 2014, Article ID 780269, 13 pages (2014) https://doi.org/10.1155/2014/780269

  39. Başhan, A., Karakoç, S.B.G., Geyikli, T.: Approximation of the KdVB equation by the quintic B-spline differential quadrature method. Kuwait J. Sci. 42(2), 67–92 (2015)

    MathSciNet  Google Scholar 

  40. Başhan, A., Yağmurlu, N.M., Uçar, Y., Esen, A.: An effective approach to numerical soliton solutions for the Schrödinger equation via modified cubic B-spline differential quadrature method. Chaos Solitons Fractals 100, 45–56 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  41. Başhan, A., Uçar, Y., Yağmurlu, N.M., Esen, A.: Numerical solution of the complex modified Korteweg-de Vries equation by DQM, J. Phys. Conf. Ser. 766, 0120281–0120286 (2016). https://doi.org/10.1088/1742-6596/766/1/012028

    Article  Google Scholar 

  42. Başhan, A.: An effective application of differential quadrature method based on modified cubic B-splines to numerical solutions of KdV equation. Turk. J. Math. 42, 373–394 (2018). https://doi.org/10.3906/mat-1609-69

    Article  MathSciNet  Google Scholar 

  43. Prenter, P.M.: Splines and Variational Methods. John Wiley, New York (1975)

    MATH  Google Scholar 

  44. Mittal, R.C., Jain, R.K.: Numerical solutions of Nonlinear Burgers’ equation with modified cubic B-splines collocation method. Appl. Math. Comp. 218, 7839–7855 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Rubin, S.G., Graves, R.A.: A cubic spline approximation for problems in fluid mechanics, NASA technical report, NASA TR R-436 (1975)

  46. Malik, R.P.: On fifth order KdV-type equation, Bogoliubov laboratory of theoretical physics, JINR, 141980 Dubna, Moscow Region, Russia 1-12 (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Başhan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Başhan, A. An Efficient Approximation to Numerical Solutions for the Kawahara Equation Via Modified Cubic B-Spline Differential Quadrature Method. Mediterr. J. Math. 16, 14 (2019). https://doi.org/10.1007/s00009-018-1291-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1291-9

Mathematics Subject Classification

  • 65D32
  • 65M99
  • 35G25
  • 65D07
  • 15A30

Keywords

  • Partial differential equations
  • differential quadrature method
  • modified cubic B-splines
  • Kawahara equation