Skip to main content
Log in

Hyperinvariant Subspace Problem for Some Classes of Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

An n-normal operator may be defined as an \(n \times n\) operator matrix with entries that are mutually commuting normal operators and an operator \(T \in \mathcal {B(H)}\) is quasi-nM-hyponormal (for \(n \in \mathbb {N}\)) if it is unitarily equivalent to an \(n \times n\) upper triangular operator matrix \((T_{ij})\) acting on \(\mathcal {K}^{(n)}\), where \(\mathcal {K}\) is a separable complex Hilbert space and the diagonal entries \(T_{jj}\) \((j = 1,2,\ldots , n)\) are M-hyponormal operators in \(\mathcal {B(K)}\). This is an extended notion of n-normal operators. We prove a necessary and sufficient condition for an \(n \times n\) triangular operator matrix to have Bishop’s property \((\beta )\). This leads us to study the hyperinvariant subspace problem for an \(n \times n\) triangular operator matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aluthge, A.: On p-hyponormal operators for \(0 < p < 1\). Integral Equ. Oper. Theory 13, 307–315 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aluthge, A., Wang, D.: \(w\)-hyponormal operators. Integral Equ. Oper. Theory 36(1), 1–10 (2000)

    Article  MATH  Google Scholar 

  3. Bhatia, R., Rosenthal, P.: How and why to solve the operator equation \(AX-XB = Y\). Bull. Lond. Math. Soc 29, 1–21 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bishop, E.: A duality theory for arbitrary operator. Pac. J. Math. 9, 379–397 (1959)

    Article  MATH  Google Scholar 

  5. Dunford, N.: A survey of the theory of spectral operators. Bull. Am. Math. Soc 64, 217–274 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eschmeier, J., Putinar, M.: Spectral Decompositions and Analytic Sheaves. London Mathematical Society Monographs, No. 10. Clarendon Press, Oxford (1996)

    MATH  Google Scholar 

  7. Eschmeier, J., Laursen, K.B., Neumann, M.M.: Multipliers with natural local spectra on commutative Banach algebras. J. Funct. Anal 138, 273–294 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Furuta, T., Ito, M., Yamazaki, T.: A subclass of paranormal operators including class of log-hyponormal and several related classes. Sci. Math. 1, 389–403 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Gao, F., Fang, X.: On \(k\)-quasi-class A operators. J. Ineq. Appl. 10 (2009) (Article ID 921634)

  10. Hoover, B.: Hyperinvariant subspaces for n-normal operators. Acta. Sci. Math. (Szeged) 32, 121–126 (1972)

    MathSciNet  Google Scholar 

  11. Jeon, I.H., Kim, I.H.: On operators satisfying \(T^{*}|T^{2}|T \ge T^{*}|T|^{2}T\). Linear Algebra Appl. 418, 854–862 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kim, H.W., Pearcy, C.H.: Subnormal operators and hyperinvariant spaces. Ill. J. Math 23, 459–463 (1979)

    MATH  Google Scholar 

  13. Kim, H.W., Pearcy, C.H.: Extensions of normal operators and hyperinvariant subspaces. J. Oper. Theory 3, 203–211 (1980)

    MathSciNet  MATH  Google Scholar 

  14. Kim, I.H., Lee, W.Y.: The spectrum is continuous on the set of quasi-\(n\)-hyponormal operators. J. Math. Anal. Appl. 335, 260–267 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Laursen, K.B., Neumann, M.M.: An Introduction to Local Spectral Theory. London Mathematical Society Monographs, Oxford (2000)

    MATH  Google Scholar 

  16. Laursen, K.B., Neumann, M.M.: Automatic continuity of intertwining linear operators on Banach spaces. Rend. Circ. Mat. Palermo (2) 40, 325–341 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mecheri, S.: Bishop’s property (\(\beta \)), dunford’s property (C) and SVEP. Electr. J. Lin. Algebra 23, 523–529 (2012)

    MATH  Google Scholar 

  18. Mecheri, S.: Bishop’s property (\(\beta \)) and riesz idempotent of \(k\)-quasi-paranormal operators. Banach J. Math. Anal. 6, 147–154 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mecheri, S.: On \(k\)-quasi-\(M\)-hyponormal operators. Math. Ineq. Appl. 16, 895–902 (2013)

    MathSciNet  MATH  Google Scholar 

  20. Mecheri, S.: Subscalarity, invariant, and hyperinvariant subspaces for upper triangular operator matrices. Bull. Malays. Math. Sci. Soc. 41, 1085–1104 (2018)

    MathSciNet  MATH  Google Scholar 

  21. Nagy, S.Z., Foias, C.: Harmonic Analysis of Operators in Hilbert Spaces. North Holland, Amsterdam (1970)

    MATH  Google Scholar 

  22. Rosenblum, M.: On the operator equation \(BX- XA = Q\). Duke Math. J. 23, 263–270 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  23. Radjavi, H., Rosenthal, P.: Invarinat Subspaces. Springer, Berlin (1973)

    Book  MATH  Google Scholar 

  24. Radjavi, H., Rosental, P.: Hyperinvariant subspaces for spectral and \(n\)-normal operators. Acta. Sci. Math. (Szeged) 32, 121–126 (1971)

    MathSciNet  MATH  Google Scholar 

  25. Tanahashi, K.: Putnam’s inequality for log-hyponormal operators. Integral Equ. Oper. Theory 43, 364–372 (2004)

    MathSciNet  MATH  Google Scholar 

  26. Yuan, J.: On (\(n; k\))-quasiparanormal operators. Stud. Math. 209, 289–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank the referee for careful reading of the paper and valuable comments for the original draft.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Mecheri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecheri, S. Hyperinvariant Subspace Problem for Some Classes of Operators. Mediterr. J. Math. 15, 185 (2018). https://doi.org/10.1007/s00009-018-1230-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1230-9

Mathematics Subject Classification

Keywords

Navigation