Skip to main content
Log in

Minimal Surfaces in Three-Dimensional Riemannian Manifold Associated with a Second-Order ODE

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We show that a surface corresponding to a first-order ODE is minimal in three-dimensional Riemannian manifold which is determined by the first prolongation of \({\text {d}}y/\mathrm{d}x=p(x,y)\) if and only if \(p_{yy}=0\). Accordingly, any linear first-order ODE describes a minimal surface which is not necessarily totally geodesic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fomenko, A.T., Tuzhilin, A.A.: Elements of the Geometry and Topology of Minimal Surfaces in Three-dimensional Space. Translations of Mathematical Monographs, vol. 93. AMS, Providence (1991)

    Google Scholar 

  2. Hildebrandt, S., Tromba, A.: Mathematics and Optimal Form. Scientific American Library, New York (1985)

    MATH  Google Scholar 

  3. Chen, B.Y.: Riemannian Submanifolds: a survey, arXiv:1307.1875v1

  4. Kenmotsu, K.: Weierstrass formula for surfaces of prescribed mean curvature. Math. Ann. 245, 89–99 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bryant, R.: Surfaces of constant mean curvature one in the hyperbolic 3-space. Asterisque 154–155, 321–347 (1987)

    Google Scholar 

  6. Earp, R.S., Toubiana, E.: On the geometry of constant mean curvature one surfaces in hyperbolic space. Illinois J. Math. 45(2), 371–401 (2001)

    MathSciNet  MATH  Google Scholar 

  7. Rossman, W.: Mean curvature one surfaces in hyperbolic space, and their relationship to minimal surfaces in Euclidean space. J. Geom. Anal. 11, 669 (2001). https://doi.org/10.1007/BF02930762

    Article  MathSciNet  MATH  Google Scholar 

  8. Nelli, B., Rosenberg, H.: Minimal surfaces in \(H^2\times {\mathbb{R}}\). Bull Braz Math Soc (N.S.) 33, 263–292 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mercuri, F., Montaldo, S., Piu, P.: A Weierstrass representation formula for minimal surfaces in \(H^3\) and \(H^2\times {\mathbb{R}}\). Acta Math. Sin. 22, 1603 (2006). https://doi.org/10.1007/s10114-005-0637-y

    Article  MATH  Google Scholar 

  10. Erjavec, Z.: Minimal surfaces in \({\widetilde{\text{ SL }(2,{\mathbb{R}})}}\) geometry. Glasnik Matematički 50(1), 207–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fernández, I., Mira, P.: Constant Mean Curvature Surfaces in 3-dimensional Thurston Geometries. In: Proceedings of the international congress of mathematicians Hyderabad, India, (2010)

  12. Inoguchi, J.: Minimal surfaces in 3-dimensional solvable lie groups. Chin. Ann. Math. 24B(1), 73–84 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Inoguchi, J.: Minimal surfaces in 3-dimensional solvable Lie groups II. Bull. Aust. Math. Soc. 73, 365–374 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Inoguchi, J.: Minimal surfaces in the 3-dimensional Heisenberg group. Differ. Geom. Dyn. Syst. 10, 163–169 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Masaltsev, L.A.: Minimal surfaces in standard three-dimensional geometry \(Sol^3\). Zh. Mat. Fiz. Anal. Geom. 2, 104–110 (2006)

    MathSciNet  MATH  Google Scholar 

  16. López, R., Munteanu, M.I.: Surfaces with constant mean curvature in sol geometry. Differ. Geom. Appl. 29(1), 238–245 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kokubu, M.: On minimal surfaces in the real special linear group \(SL(2,{\mathbb{R}})\). Tokyo J. Math. 20(2), 287–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ok Bayrakdar, Z., Bayrakdar, T.: Burgers’ equations in the Riemannian geometry associated with first-order differential equations. Adv Math Phys 2018, 7590847 (2018). https://doi.org/10.1155/2018/7590847

    Article  MathSciNet  Google Scholar 

  19. Cartan, E.: Riemannian Geometry in an Orthogonal Frame. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  20. Ivey, T., Landsberg, J.M.: Cartan for Beginners: Differential Geometry via Moving Frames and Exterior Differential Systems. AMS, Providence (2003)

    Book  MATH  Google Scholar 

  21. Morita, S.: Geometry of differential forms. In: Translations of Mathematical Monographs, vol. 201. AMS, Providence (2001)

  22. Spivak, M.: A Comprehensive Introduction to Differential Geometry, vol. 3, 3rd edn. Publish or Perish Inc., Houston (1999)

    MATH  Google Scholar 

  23. Willmore, T.J.: Riemannian Geometry. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  24. Aminov, Yu.: The Geometry of Submanifolds. Gordon and Breach Science Publishers, The Netherlands (2001)

    MATH  Google Scholar 

  25. Tresse, M.A.: Sur les invariants differentiels des groupes continus de transformations. Acta Math. 18, 1–88 (1894)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tresse, M.A.: Determination des Invariantes Ponctuels de l’Equation Differentielle du Second Ordre \(y^{\prime \prime }=\omega (x, y, y^{\prime })\). Leipzig, Hirzel (1896)

    MATH  Google Scholar 

  27. Lie, S.: Klassifikation und Integration von gewöhnlichen Differentialgleichungen zwischen \(x, y\), die eine Gruppe von Transformationen gestatten I–IV. In: Engel, F., Heegaard, P. (eds.) Gesammelte Abhandlungen, vol. 5, pp. 240–310, 362–427, 389 432–448. Teubner, Leipzig (1924)

  28. Cartan, E.: Sur les varietes à connection projective. Bull. Soc. Math. France 52, 205–241 (1924)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kamran, N., Lamb, K., Shadwick, W.F.: The local equivalence problem for \(d^2 y/dx^2 = F(x, y, dy/dx)\) and the Painlevé transcendents. J. Differ. Geom. 22, 139–150 (1985)

    Article  MATH  Google Scholar 

  30. Grissom, C., Thompson, G., Wilkens, G.: Linearization of second order ordinary differential equations via Cartans equivalence method. J. Differ. Equ. 77, 1–15 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fels, M.E.: The equivalence problem for systems of second-order ordinary differential equations. Proc. Lond. Math. Soc. 71(1), 221–240 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  32. Crampin, M., Marínez, E., Sarlet, W.: Linear connections for systems of second-order ordinary differential equations. Annales de l’ I. H. P. Sect A Tome 65(2), 223–249 (1996)

    MathSciNet  MATH  Google Scholar 

  33. Doubrov, B., Komrakov, B., Morimoto, T.: Equivalence of holonomic differential equations. Lobachevskii J. Math. 3, 39–71 (1999)

    MathSciNet  MATH  Google Scholar 

  34. Bryant, R., Dunajski, M., Eastwood, M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83, 465–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  35. Fritelli, S., Kozameh, C., Newman, E.T.: Differential geometry from differential equations. Commun. Math. Phys. 223, 383–408 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  36. Newman, E.T., Nurowski, P.: Projective connections associated with second order ODEs. Class. Quantum Gravity 20, 2325–2335 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. Eastwood, M., Matveev, V.: Metric connections in projective differential geometry. In: Eastwood, M., Miller, W. (eds.) Symmetries and Overdetermined Systems of Partial Differential Equations, pp. 339–350. Springer, New York (2008)

  38. Saunders, D.J.: The Geometry of Jet Bundles. Cambridge University Press, Cambridge (1989)

    Book  MATH  Google Scholar 

  39. Krupka, D., Saunders, D. (eds.): Handbook of Global Analysis. Elsevier, Oxford (2008)

    MATH  Google Scholar 

  40. Vassiliou, P.J., Lisle, I.G.: Geometric Approaches to Differential Equations. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Bayrakdar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayrakdar, T., Ergin, A.A. Minimal Surfaces in Three-Dimensional Riemannian Manifold Associated with a Second-Order ODE. Mediterr. J. Math. 15, 183 (2018). https://doi.org/10.1007/s00009-018-1229-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1229-2

Mathematics Subject Classification

Keywords

Navigation