Skip to main content
Log in

Time–frequency Analysis Associated with Some Partial Differential Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove the boundedness and compactness of localization operators associated with Riemann–Liouville wavelet transforms, which depend on a symbol and two Riemann–Liouville wavelets on \(L^{p}(\mathrm{d}\nu _{_{\alpha }})\), \(1 \le p \le \infty \). Next, we establish Shapiro’s mean dispersion-type theorems and we study the scalogram for the same wavelet transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abreu, L.D., Grchenig, K., Romero, J.L.: On accumulated spectrograms. Trans. Am. Math. Soc. 368, 3629–3649 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Amri, B., Rachdi, L.T.: Beckner logarithmic uncertainty principle for the Riemann-Liouville operator. Int. J. Math. 24(9), 1350070 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baccar, C., Hamadi, N.B., Rachdi, L.T.: Inversion formulas for the Riemann-Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. Article ID 86238, 2006 (2006) 1–26

  4. Baccar, C., Rachdi, L.T.: Spaces of DLp-type and a convolution product associated with the Riemann–Liouville operator. Bull. Math. Anal. Appl. 1(3), 16–41 (2009)

    MathSciNet  MATH  Google Scholar 

  5. Baccar, C., Hamadi, N.B.: Localization operators of the wavelet transform associated to the Riemann-Liouville operator. Int. J. Math. 27, 1650036 (2016). (20 pages)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hamadi, N.B., Rachdi, L.T.: Weyl transforms associated with the Riemann–Liouville operator. Int. J. Math. Math. Sci. 2006 (Article ID 94768) (2006)

  7. Bennett, C., Sharpley, R.: Interpolation of Operators. Academic Press, Cambridge (1988)

    MATH  Google Scholar 

  8. Calderon, J.P.: Intermediate spaces and interpolation, the complex method. Stud. Math. 24, 113–190 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cordero, E., Gröchenig, K.: Time-frequency analysis of localization operators. J. Funct. Anal. 205(1), 107–131 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daubechies, I.: Time-frequency localization operators: a geometric phase space approach. IEEE Trans. Inf. Theory 34(4), 605–612 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Daubechies, I., Paul, T.: Time-frequency localization operators-a geometric phase space approach: II. The use of dilations. Inverse Probl. 4(3), 661–680 (1988)

    Article  MATH  Google Scholar 

  12. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  13. De Mari, F., Feichtinger, H., Nowak, K.: Uniform eigenvalue estimates for time-frequency localization operators. J. Lond. Math. Soc. 65(03), 720–732 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. De Mari, F., Nowak, K.: Localization type Berezin–Toeplitz operators on bounded symmetric domains. J. Geom. Anal. 12(1), 9–27 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ghobber, S.: Some results on wavelet scalograms. Int. J. Wavel Multiresolution 15, 1750019 (2017). (20 pages)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gröchenig, K.: Foundations of Time–frequency Analysis. Springer, New York (2001)

    Book  MATH  Google Scholar 

  17. Fawcett, J.A.: Inversion of N-dimensional spherical means. SIAM. J. Appl. Math. 45, 336–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  18. Folland, G.B.: Introduction to Partial Differential Equations, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  19. Helesten, H., Andersson, L.E.: em An inverse method for the processing of synthetic aperture radar data. Inv. Prob. 3, 111–124 (1987)

    Article  Google Scholar 

  20. Hleili, K., Omri, S., Rachdi, L.: Uncertainty principle for the Riemann–Liouville operator. Cubo A Math. J. 13(03), 91–115 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. John, F.: Plane Waves and Spherical Means Applied to Partial Differential Equations. Interscience, New York (1955)

    MATH  Google Scholar 

  22. Liu, L.: A trace class operator inequality. J. Math. Anal. Appl. 328, 1484–1486 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Malinnikova, E.: Orthonormal sequences in \(L^{2} (\mathbb{R}^{d})\) and time frequency localization. J. Fourier Anal. Appl. 16(6), 983–1006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Msehli, N., Rachdi, L.T.: Uncertainty principle for the Riemann–Liouville operator. Cubo 13(03), 119–126 (2011)

    MathSciNet  Google Scholar 

  25. Omri, S., Rachdi, L.: Heisenberg–Pauli–Weyl uncertainty principle for the Riemann–Liouville operator. J. Inequal. Pure Appl. Math. 9(88), 23 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Ramanathan, J., Topiwala, P.: Time-frequency localization via the Weyl correspondence. SIAM J. Math. Anal. 24(5), 1378–1393 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Riesz, F., Nagy, BSz: Functional Analysis. Frederick Ungar Publishing Co., New York (1995)

    MATH  Google Scholar 

  28. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  29. K. Trimèche, Permutation operators and the central limit theorem associated with partial differential operators. Proceedings of the tenth Oberwolfach conference on probability measures on groups, held November 4-10,1990 in Oberwolfach, Germany. Probability measures on groups X, (1991), pp. 395–424

  30. Wong, M.W.: Wavelet Transforms and Localization Operators, vol. 136. Springer, New York (2002)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slim Omri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejjaoli, H., Omri, S. Time–frequency Analysis Associated with Some Partial Differential Operators. Mediterr. J. Math. 15, 161 (2018). https://doi.org/10.1007/s00009-018-1198-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1198-5

Keywords

Mathematics Subject Classification

Navigation