Skip to main content
Log in

Generalized Kähler Spaces in Eisenhart’s Sense Admitting a Holomorphically Projective Mapping

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We relax the conditions \(\underset{1}{\nabla }F=0\) and \(\underset{2}{\nabla }F=0\) with respect to the non-symmetric linear connections \(\underset{1}{\nabla }\) and \(\underset{2}{\nabla }\) and an almost complex structure F of a generalized Kähler space. In such a way we introduce a wider class of generalized Kähler spaces which admits a holomorphically projective mapping. These generalized Kähler spaces are named generalized Kähler spaces in Eisenhart’s sense, since they are defined as a particular case of Eisenhart’s generalized Riemannian spaces. Curvature tensors of generalized Kähler spaces in Eisenhart’s sense have some interesting properties that have been pointed out in the present paper. Also, we consider equitorsion holomorphically projective mappings and examine some invariant geometric objects with respect to these mappings. Our results are deduced without restrictive conditions that were given in some of the previous papers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belova, O., Mikeš, J., Strambach, K.: Complex curves as lines of geometries. Results Math. 71, 145–465 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bompiani, E.: Signifacato del tensore di torsione di una connessione affine. Boll.dell Unione math. Italiana 6(4), 273–276 (1951)

    MATH  Google Scholar 

  3. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Domashev, V.V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Mat. Zametki 23, 297–303 (1978)

    MathSciNet  MATH  Google Scholar 

  5. Eisenhart, L.P.: Generalized Riemannian spaces. Proc. Natl. Acad. Sci. USA 37, 311–315 (1951)

    Article  MATH  Google Scholar 

  6. Graif, F.: Sulla posibilita di construire paralelogrami chiusi in alcune varieta a torsione. Boll. d. Un. math. Ital. Ser. III 7, 132–135 (1952)

    Google Scholar 

  7. Hinterleitner, I., Mikeš, J.: On F-planar mappings of spaces with affine connections. Note Mat. 27, 111–118 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Hinterleitner, I., Mikeš, J.: On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Arch. Math. (Brno) 49, 255–264 (2013)

    MATH  Google Scholar 

  9. Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Math. (Brno) 45, 295–302 (2009)

    MathSciNet  MATH  Google Scholar 

  10. Janssen, T., Prokopec, T.: Problems and hopes in nonsymmetric gravity. J. Phys. A, Math. Theor. 40, 7067–7074 (2007)

    Article  Google Scholar 

  11. Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb. 23, 90–98 (1980)

    MATH  Google Scholar 

  12. Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89, 1334–1353 (1998) (New York)

  13. Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods Mod. Phys. 11, 1450044 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacky University, Faculty of Science, Olomouc (2009)

  15. Mikeš, J., et al.: Differential geometry of special mappings. Palacký University Press, Olomouc (2015)

    MATH  Google Scholar 

  16. Minčić, S.M.: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesnik 10, 161–172 (1973)

    MathSciNet  MATH  Google Scholar 

  17. Minčić, S.M.: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math. Nouv. Sér. 22, 189–199 (1977)

    MathSciNet  MATH  Google Scholar 

  18. Minčić, S.M.: Independent curvature tensorsand pseudotensors of spaces with non-symmetric affine connexion, Differential Geometry (Budapest, 1979), Colloq. Math. Soc. János Bolyai, vol. 31. North-Holland, Amsterdam, pp. 445–460 (1982)

  19. Minčić, S.M.: On Ricci type identities in manifolds with non-symmetric affine connection. Publ. Inst. Math., Nouv. Sér. 94, 205–217 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Minčić, S.M., Stanković, M.S., Velimirović, Lj.S.: Generalized Kählerian spaces. Filomat 15, 167–174 (2001)

  21. Moffat, J.W.: A new nonsymmetric gravitational theory. Phys. Lett. B 355, 447–452 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Petrović, M.Z.: Holomorphically projective mappings between generalized hyperbolic Kähler spaces. J. Math. Anal. Appl. 447, 435–451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Prvanović, M.: Holomorphically projective transformations in a locally product Riemannian spaces. Math. Balkanica 1, 195–213 (1971)

    MathSciNet  MATH  Google Scholar 

  24. Prvanović, M.: Four curvature tensors of non-symmetric affine connexion. In: Proc. Conf.: “150 years of Lobachevsky geometry” (Kazan, 1976). Moscow, pp. 199–205 (1977) (in Russian)

  25. Prvanović, M.: A note on holomorphically projective transformations of the Kähler spaces. Tensor New Ser. 35, 99–104 (1981)

    MATH  Google Scholar 

  26. Stanković, M.S., Minčić, S.M., Velimirović, Lj.S.: On holomorphically projective mappings of generalized Kählerian spaces. Mat. Vesn. 54, 195–202 (2002)

  27. Stanković, M.S., Minčić, S.M., Velimirović, Lj.S.: On equitorsion holomorphically projective mappings of generalized Kählerian spaces. Czech. Math. J. 54, 701–715 (2004)

  28. Yano, K.: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, New York (1965)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant No. 174012 of the Ministry of Education, Science and Technological Development, Republic of Serbia. The authors are grateful to the anonymous referee whose suggestions led to construction of Example 3.1 and to conclusion that in real dimension \(n=2\) there does not exist any example of a generalized Kähler space in Eisenhart’s sense.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miloš Z. Petrović.

Additional information

This work was supported by Grant No. 174012 of the Ministry of Education, Science and Technological Development, Republic of Serbia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrović, M.Z., Velimirović, L.S. Generalized Kähler Spaces in Eisenhart’s Sense Admitting a Holomorphically Projective Mapping. Mediterr. J. Math. 15, 150 (2018). https://doi.org/10.1007/s00009-018-1194-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1194-9

Mathematics Subject Classification

Keywords

Navigation