Advertisement

Generalized Kähler Spaces in Eisenhart’s Sense Admitting a Holomorphically Projective Mapping

  • Miloš Z. Petrović
  • Ljubica S. Velimirović
Article
  • 22 Downloads

Abstract

We relax the conditions \(\underset{1}{\nabla }F=0\) and \(\underset{2}{\nabla }F=0\) with respect to the non-symmetric linear connections \(\underset{1}{\nabla }\) and \(\underset{2}{\nabla }\) and an almost complex structure F of a generalized Kähler space. In such a way we introduce a wider class of generalized Kähler spaces which admits a holomorphically projective mapping. These generalized Kähler spaces are named generalized Kähler spaces in Eisenhart’s sense, since they are defined as a particular case of Eisenhart’s generalized Riemannian spaces. Curvature tensors of generalized Kähler spaces in Eisenhart’s sense have some interesting properties that have been pointed out in the present paper. Also, we consider equitorsion holomorphically projective mappings and examine some invariant geometric objects with respect to these mappings. Our results are deduced without restrictive conditions that were given in some of the previous papers.

Keywords

Generalized Riemannian space generalized Kähler space holomorphically projective mapping equitorsion mapping invariant geometric object 

Mathematics Subject Classification

Primary 53B05 Secondary 53B20 53B35 

Notes

Acknowledgements

This work was supported by Grant No. 174012 of the Ministry of Education, Science and Technological Development, Republic of Serbia. The authors are grateful to the anonymous referee whose suggestions led to construction of Example 3.1 and to conclusion that in real dimension \(n=2\) there does not exist any example of a generalized Kähler space in Eisenhart’s sense.

References

  1. 1.
    Belova, O., Mikeš, J., Strambach, K.: Complex curves as lines of geometries. Results Math. 71, 145–465 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bompiani, E.: Signifacato del tensore di torsione di una connessione affine. Boll.dell Unione math. Italiana 6(4), 273–276 (1951)zbMATHGoogle Scholar
  3. 3.
    Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Domashev, V.V., Mikeš, J.: Theory of holomorphically projective mappings of Kählerian spaces. Mat. Zametki 23, 297–303 (1978)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Eisenhart, L.P.: Generalized Riemannian spaces. Proc. Natl. Acad. Sci. USA 37, 311–315 (1951)CrossRefzbMATHGoogle Scholar
  6. 6.
    Graif, F.: Sulla posibilita di construire paralelogrami chiusi in alcune varieta a torsione. Boll. d. Un. math. Ital. Ser. III 7, 132–135 (1952)Google Scholar
  7. 7.
    Hinterleitner, I., Mikeš, J.: On F-planar mappings of spaces with affine connections. Note Mat. 27, 111–118 (2007)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Hinterleitner, I., Mikeš, J.: On holomorphically projective mappings from manifolds with equiaffine connection onto Kähler manifolds. Arch. Math. (Brno) 49, 255–264 (2013)zbMATHGoogle Scholar
  9. 9.
    Hrdina, J.: Almost complex projective structures and their morphisms. Arch. Math. (Brno) 45, 295–302 (2009)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Janssen, T., Prokopec, T.: Problems and hopes in nonsymmetric gravity. J. Phys. A, Math. Theor. 40, 7067–7074 (2007)CrossRefGoogle Scholar
  11. 11.
    Mikeš, J.: On holomorphically projective mappings of Kählerian spaces. Ukr. Geom. Sb. 23, 90–98 (1980)zbMATHGoogle Scholar
  12. 12.
    Mikeš, J.: Holomorphically projective mappings and their generalizations. J. Math. Sci. 89, 1334–1353 (1998) (New York)Google Scholar
  13. 13.
    Mikeš, J., Chudá, H., Hinterleitner, I.: Conformal holomorphically projective mappings of almost Hermitian manifolds with a certain initial condition. Int. J. Geom. Methods Mod. Phys. 11, 1450044 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations. Palacky University, Faculty of Science, Olomouc (2009)Google Scholar
  15. 15.
    Mikeš, J., et al.: Differential geometry of special mappings. Palacký University Press, Olomouc (2015)zbMATHGoogle Scholar
  16. 16.
    Minčić, S.M.: Ricci identities in the space of non-symmetric affine connexion. Mat. Vesnik 10, 161–172 (1973)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Minčić, S.M.: New commutation formulas in the non-symmetric affine connexion space. Publ. Inst. Math. Nouv. Sér. 22, 189–199 (1977)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Minčić, S.M.: Independent curvature tensorsand pseudotensors of spaces with non-symmetric affine connexion, Differential Geometry (Budapest, 1979), Colloq. Math. Soc. János Bolyai, vol. 31. North-Holland, Amsterdam, pp. 445–460 (1982)Google Scholar
  19. 19.
    Minčić, S.M.: On Ricci type identities in manifolds with non-symmetric affine connection. Publ. Inst. Math., Nouv. Sér. 94, 205–217 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Minčić, S.M., Stanković, M.S., Velimirović, Lj.S.: Generalized Kählerian spaces. Filomat 15, 167–174 (2001)Google Scholar
  21. 21.
    Moffat, J.W.: A new nonsymmetric gravitational theory. Phys. Lett. B 355, 447–452 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Petrović, M.Z.: Holomorphically projective mappings between generalized hyperbolic Kähler spaces. J. Math. Anal. Appl. 447, 435–451 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Prvanović, M.: Holomorphically projective transformations in a locally product Riemannian spaces. Math. Balkanica 1, 195–213 (1971)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Prvanović, M.: Four curvature tensors of non-symmetric affine connexion. In: Proc. Conf.: “150 years of Lobachevsky geometry” (Kazan, 1976). Moscow, pp. 199–205 (1977) (in Russian)Google Scholar
  25. 25.
    Prvanović, M.: A note on holomorphically projective transformations of the Kähler spaces. Tensor New Ser. 35, 99–104 (1981)zbMATHGoogle Scholar
  26. 26.
    Stanković, M.S., Minčić, S.M., Velimirović, Lj.S.: On holomorphically projective mappings of generalized Kählerian spaces. Mat. Vesn. 54, 195–202 (2002)Google Scholar
  27. 27.
    Stanković, M.S., Minčić, S.M., Velimirović, Lj.S.: On equitorsion holomorphically projective mappings of generalized Kählerian spaces. Czech. Math. J. 54, 701–715 (2004)Google Scholar
  28. 28.
    Yano, K.: Differential Geometry of Complex and Almost Complex Spaces. Pergamon Press, New York (1965)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Miloš Z. Petrović
    • 1
  • Ljubica S. Velimirović
    • 1
  1. 1.Department of MathematicsFaculty of Sciences and MathematicsNišSerbia

Personalised recommendations