Skip to main content
Log in

Reverse Order Law for the Core Inverse in Rings

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, necessary and sufficient conditions of the one-sided reverse order law \((ab)^{\tiny {\textcircled {\tiny \#}}}=b^{\tiny {\textcircled {\tiny \#}}}a^{\tiny {\textcircled {\tiny \#}}}\), the two-sided reverse order law \((ab)^{\tiny {\textcircled {\tiny \#}}}=b^{\tiny {\textcircled {\tiny \#}}}a^{\tiny {\textcircled {\tiny \#}}}\) and \((ba)^{\tiny {\textcircled {\tiny \#}}}=a^{\tiny {\textcircled {\tiny \#}}}b^{\tiny {\textcircled {\tiny \#}}}\) for the core inverse are given in rings with involution. In addition, the mixed-type reverse order laws, such as \((ab)^{\#}=b^{\tiny {\textcircled {\tiny \#}}}(abb^{\tiny {\textcircled {\tiny \#}}})^{\tiny {\textcircled {\tiny \#}}}\), \(a^{\tiny {\textcircled {\tiny \#}}}=b(ab)^{\#}\) and \((ab)^{\#}=b^{\tiny {\textcircled {\tiny \#}}}a^{\tiny {\textcircled {\tiny \#}}}\), are also considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baksalary, O.M., Trenkler, G.: Problem 48–1: reverse order law for the core inverse. Image 48, 40 (2012)

    Google Scholar 

  3. Benítez, J., Liu, X.J., Zhong, J.: Some results on matrix partial orderings and reverse order law. Electron. J. Linear Algebra 20, 254–273 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Chen, J.L., Zhu, H.H., Patrício, P., Zhang, Y.L.: Characterizations and representations of core and dual core inverses. Can. Math. Bull. 60, 269–282 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cline, R.E.: An application of representation for the generalized inverse of a matrix, MRC Technical Report 592, (1965)

  6. Cohen, N., Herman, E.A., Jayaraman, S.: Solution to problem 48–1: reverse order law for the core inverse. Image 49, 46–47 (2012)

    Google Scholar 

  7. Cvetković-Ilić, D.S., Djikić, M.: Various solutions to reverse order law problems. Linear Multilinear Algebra 64, 1207–1219 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cvetković-Ilić, D.S., Harte, R.: Reverse order laws in \(C^{\ast }\)-algebras. Linear Algebra Appl. 434, 1388–1394 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cvetković-Ilić, D.S., Pavlović, V.: A comment on some recent results concerning the reverse order law for \(\{1, 3, 4\}\)-inverses. Appl. Math. Comput. 217, 105–109 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Deng, C.Y.: Reverse order law for the group inverses. J. Math. Anal. Appl. 382, 663–671 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinčić, N.Č., Djordjević, D.S.: Hartwig’s triple reverse order law revisited. Linear Multilinear Algebra 62, 918–924 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drazin, M.P.: Pseudo-inverses in associative rings and semigroups. Am. Math. Mon. 65, 506–514 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  13. Greville, T.N.E.: Note on the generalized inverse of a matrix product. SIAM Rev. 8, 518–521 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hartwig, R.E.: Block generalized inverses, Arch. Ration. Mech. Anal. 61, 197–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hartwig, R.E., Luh, J.: A note on the group structure of unit regular ring elements. Pac. J. Math. 71, 449–461 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  16. Izumino, S.: The product of operators with closed range and an extension of the reverse order law. Tohoku Math. J. 34, 43–52 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, X.J., Fu, S.Q., Yu, Y.M.: An invariance property of operator products related to the mixed-type reverse order laws. Linear Multilinear Algebra 64, 885–896 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, X.J., Zhang, M., Benítez, J.: Further results on the reverse order law for the group inverse in rings. Appl. Math. Comput. 229, 316–326 (2014)

    MathSciNet  MATH  Google Scholar 

  19. Mary, X.: Reverse order law for the group inverse in semigroups and rings. Commun. Algebra 43, 2492–2508 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mosić, D., Dinčić, N.Č.: Reverse order law \((ab)^{\dagger }=b^{\dagger }(a^{\dagger }abb^{\dagger })^{\dagger }a^{\dagger }\) in rings with involution. Filomat 28, 1791–1815 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mosić, D., Djordjević, D.S.: Reverse order law for the Moore-Penrose inverse in \(C^{\ast }\)-algebras. Electron. J. Linear Algebra 22, 92–111 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Mosić, D., Djordjević, D.S.: Some results on the reverse order law in rings with involution. Aequ. Math. 83, 271–282 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mosić, D., Djordjević, D.S.: Reverse order law for the group inverse in rings. Appl. Math. Comput. 219, 2526–2534 (2012)

    MathSciNet  MATH  Google Scholar 

  24. Mosić, D., Djordjević, D.S.: The reverse order law \((ab)^{\#}=b^{\dagger }(a^{\dagger }abb^{\dagger })^{\dagger }a^{\dagger }\) in rings with involution, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A Matemáticas 109, 257–265 (2015)

    MATH  Google Scholar 

  25. Pavlović, V., Cvetković-Ilić, D.S.: Applications of completions of operator matrices to reverse order law for \(\{1\}\)-inverses of operators on Hilbert spaces. Linear Algebra Appl. 484, 219–236 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penrose, R.: A generalized inverse for matrices. Proc. Camb. Philos. Soc. 51, 406–413 (1955)

    Article  MATH  Google Scholar 

  27. Puystjens, P., Hartwig, R.E.: The group inverse of a companion matrix. Linear Multilinear Algebra 43, 137–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rakić, D.S., Dinčić, N.Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Tian, Y.: On mixed-type reverse-order laws for the Moore–Penrose inverse of a matrix product. Int. J. Math. Math. Sci. 58, 3103–3116 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Wang, H.X., Liu, X.J.: Characterizations of the core inverse and the core ordering. Linear Multilinear Algebra 63, 1829–1836 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xu, S.Z., Chen, J.L., Zhang, X.X.: New characterizations for core inverses in rings with involution. Front. Math. China 12, 231–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research was supported by China Postdoctoral Science Foundation (No. 2018M632385), the National Natural Science Foundation of China (No.11771076), the Natural Science Foundation of Jiangsu Province (No.BK20141327), the Portuguese Funds through FCT-“Fundação para a Ciência e a Tecnologia”, within the project UID/MAT/00013/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, H., Chen, J. & Patrício, P. Reverse Order Law for the Core Inverse in Rings. Mediterr. J. Math. 15, 145 (2018). https://doi.org/10.1007/s00009-018-1189-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1189-6

Keywords

Mathematics Subject Classification

Navigation