A Levenberg–Marquardt Method for Nonlinear Complementarity Problems Based on Nonmonotone Trust Region and Line Search Techniques

Article

Abstract

Using the FB function, we propose a new Levenberg–Marquardt algorithm for nonlinear complementarity problem. To obtain the global convergence, the algorithm uses the nonmonotone trust region and line search techniques under a convenient boundedness assumption. Furthermore, we get local superlinear/quadratic convergence of the algorithm under a nonsingularity condition. Some numerical examples are given to illustrate the performance and efficiency of the presented algorithm.

Keywords

Nonlinear complementarity problems nonmonotone Levenberg–Marquardt algorithm trust region technique global convergence superlinear/quadratic convergence 

Mathematics Subject Classification

65K05 90C33 

References

  1. 1.
    Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Chen, B., Harker, P.T.: Smoothing approximations to nonlinear complementarity problems. SIAM J. Optim. 7, 403–423 (1997)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Luca, T.D., Facchinei, F., Kanzow, C.: A semismooth equation approach to the solution of nonlinear complementarity problems. Math. Prog. 75, 407–439 (1996)MathSciNetMATHGoogle Scholar
  4. 4.
    Fischer, A.: Solution of monotone complementarity problems with locally Lipschitz functions. Math. Prog. 76, 669–713 (1997)Google Scholar
  5. 5.
    Chen, X., Qi, L., Sun, D.: Global and superlinear convergence of the smoothing Newton method and its application to general box constrained variational inequalities. Math. Comput. 67, 519–540 (1998)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ma, C., Tang, J., Chen, X.H.: A globally convergent Levenberg-Marquardt method for solving nonlinear complementarity problem. Math. Comput. 192, 370–381 (2007)MathSciNetMATHGoogle Scholar
  7. 7.
    Xie, Y., Ma, C.: A smoothing Levenberg-Marquardt altorithm for solving a class of stochastic linear complementarity problem. Appl. Math. Comput. 217, 4459–4472 (2011)MathSciNetMATHGoogle Scholar
  8. 8.
    Wang, X., Ma, C., Li, Meiyan: A smoothing trust region method for NCPs based on the smoothing generalized Fischer-Burmeister function. J. Comput. Math. 29, 261–286 (2011)MathSciNetMATHGoogle Scholar
  9. 9.
    Chen, B., Ma, C.: Superlinear/quadratic smoothing Broyden-like method for the generalized nonlinear complementarity problem. Nonlinear Anal. Real World Appl. 12, 1250–1263 (2011)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Tang, J., Ma, C.: A smoothing Newton method for solving a class of stochastic linear complementarity problems. Nonlinear Anal. Real World Appl. 12, 3585–3601 (2011)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Chen, B., Ma, C.: A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P0-function. J. Glob. Optim. 51, 473–495 (2011)CrossRefMATHGoogle Scholar
  12. 12.
    Ma, C.: A new smoothing and regularization Newton method for \(P_0\)-NCP. J. Glob. Optim. 48(2), 241–261 (2010)CrossRefMATHGoogle Scholar
  13. 13.
    Nocedal, J., Yuan, Y.X.: Combining trust region and line search techniques. In: Advances in Nonlinear Programming (Beijing, 1996), Appl. Optim., Vol .14, pp. 153–175. Kluwer Acad. Publ., Dordrecht (1998)Google Scholar
  14. 14.
    Zhang, H., Hager, W.W.: A nonmonotone line search technique and its application to unconstrained optimization. SIAM J. Optim. 14(4), 1043–1056 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Qi, L., Sun, D., Zhou, G.: A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequality problems. Math. Prog. 87, 1–35 (2000)CrossRefMATHGoogle Scholar
  16. 16.
    Yu, H., Pu, D.: Smoothing Levenberg-Marquardt method for general nonlinear complementarity problems under local error bound. Appl. Math. 35, 1337–1348 (2011)MathSciNetMATHGoogle Scholar
  17. 17.
    Yang, Y., Qi, L.: Smoothing trust region methods for nonlinear complementarity problems with \(P_0\)-function. Ann. Oper. Res. 133, 99–117 (2005)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Ahn, B.H.: Iterative methods for linear complementarity problems with upperbounds on primary variables. Math. Prog. 26, 295–315 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Pang, J.-S., Qi, L.: Nonsmooth equations: motivation and algorithms. SIAM J. Optim. 3, 443–465 (1993)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kanzow, C.: Global convergence properties of some iterative methods for linear complementarity problems. SIAM J. Optim. 6, 326–341 (1996)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Kanzow, C.: Some equation-based methods for the nonlinear Complementarity problem. Optim. Method. Softw. 3, 327–340 (1994)CrossRefGoogle Scholar
  22. 22.
    Dirkse, S., Ferris, M.: MCPLIB: a collection of nonlinear mixed complementarity problems. Optim. Methods Softw. 5, 319–45 (1995)CrossRefGoogle Scholar
  23. 23.
    Levenberg, K.: A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–166 (1944)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear inequalities. SIAM J. Appl. Math. 11, 431–441 (1963)CrossRefMATHGoogle Scholar
  25. 25.
    Yamashita, N., Fukushima, M.: On the rate of convergence of the Levenberg-Marquardt method. Computing 15, 239–249 (2001)MathSciNetMATHGoogle Scholar
  26. 26.
    Qi, L., Sun, J.: A nonsmooth version of Newton’s method. Mathe. Prog. 58(1–3), 353–367 (1993)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Clarke, F.H.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Dan, H., Yamashita, N., Fukushima, M.: Convergence properties of the inexact Levenberg-Marquardt method under local error bound conditions. Optimiz. Methods Softw. 17(4), 605–626 (2002)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhang, J., Zhang, X.: A smoothing Levenberg-Marquardt method for NCP. Appl. Math. Comput. 178, 212–228 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Du, S., Gao, Y.: Convergence analysis of nonmonotone Levenberg–Marquardt algorithms for complementarity. Appl. Math. Comput. 216, 1652–1659 (2010)MathSciNetMATHGoogle Scholar
  31. 31.
    Fan, J.Y.: A modified Levenberg–Marquardt algorithm for singular system of nonlinear equations. Math. Comput. 5, 625–636 (2003)MathSciNetMATHGoogle Scholar
  32. 32.
    Yamashita, N., Fukushima, M.: Modified Newton methods for solving a semismooth reformulation of monotone complementarity problem. Math. Prog. 76, 469–491 (1997)MathSciNetMATHGoogle Scholar
  33. 33.
    Gao, D.Y.: Analytic solutions and triality theory for nonconvex and nonsmooth variational problems with applications. Nonlinear Anal. 42, 1161–1193 (2000)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Powell, M.J.D.: Convergence properties of a class of minimization algorithms. Nonlinear Prog. 2, 1–27 (1975)MATHGoogle Scholar
  35. 35.
    Dennis, J.E., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations. SIAM, Philadelphia (1996)CrossRefMATHGoogle Scholar
  36. 36.
    Ruggiero, M.A.G., Martínez, J.M., Santos, S.A.: Solving nonsmooth equations by means of quasi-Newton methods with globalization. In: Recent Advances in Nonsmooth Optimization, pp. 121–140. World Scientific, Singapore (1995)Google Scholar
  37. 37.
    Spedicato, E., Huang, Z.: Numerical experience with Newton-like methods for nonlinear algebraic systems. Computing 58, 69–89 (1997)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and InformaticsFujian Normal UniversityFuzhouPeople’s Republic of China
  2. 2.School of Mathematical SciencesXiamen UniversityXiamenPeople’s Republic of China
  3. 3.College of Computer and Information SciencesFujian Agriculture and Forestry UniversityFuzhouPeople’s Republic of China
  4. 4.School of Electronics and Information EngineeringFuqing Branch of Fujian Normal UniversityFuqingPeople’s Republic of China

Personalised recommendations