Abstract
Let T be a dual integrable representation of a countable discrete LCA group G, acting on a Hilbert space \({\mathcal {H}}\). We consider the problem of characterizing \(\ell ^p(G)\)-linear independence (\(p\ne 2\)) of the system \(\{T_{k}\psi :k\in G\}\) for the given \(\psi \in {\mathcal {H}}\), which we previously studied in the context of the integer translates of a square integrable function. The extensions of the known results for translates to this setting are obtained using a slightly different approach, through which we show that, under certain conditions, this problem is related to the ‘Wiener’s closure of translates’ problem and the problem of the existence of p-zero divisors, arising around the zero divisor conjecture in algebra. Using this connection, we also obtain several improvements for the case of the integer translates.
Similar content being viewed by others
References
Ash, J.M., Wang, G.: Uniqueness questions for multiple trigonometric series. Contemp. Math. 444, 129–165 (2007)
Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for Heisenberg group and the characterization of cyclic subspaces. Appl. Comput. Harmon. Anal. 37(2), 218–234 (2014)
Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)
Barbieri, D., Hernandez, E., Paternostro, V.: The Zak transform and the structure of spaces invariant by the action of an LCA group. J. Funct. Anal. 269(5), 1327–1358 (2015)
Edwards, R.E.: Spans of translates in \(L^p(G)\). J. Austral. Math. Soc. 5, 216–233 (1965)
Figà-Talamanca, A., Gaudry, G.I.: Multipliers and sets of uniqueness of \(L^{p}\). Mich. Math. J. 17, 179–191 (1970)
Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)
Heil, C.E., Powell, A.M.: Gabor Schauder bases and the Balian-Low theorem. J. Math. Phys. 47 (2006)
Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform. Colloq. Math. 118(1), 313–332 (2010)
Herz, C.S.: A note on span of translations in \(L^p\). Proc. Am. Math. Soc. 8, 724–727 (1957)
Kahane, J.-P., Salem, R.: Ensembles parfaits et séries trigonométriques. Hermann (1994)
Lev, N., Olevskii, A.: Wiener’s ‘closure of translates’ problem and Piatetski-Shapiro’s uniqueness phenomenon. Ann. Math. (2) 174(1), 519–541 (2011)
Linnell, P.A.: Zero divisors and group von Neumann algebras. Pac. J. Math. 149, 349–363 (1991)
Linnell, P.A: Analytic versions of the Zero Divisor Conjecture. In: Kropholler, P.H., Niblo, G.A., Stöhr, R. (Eds.) Geometry and Cohomology in Group Theory. London Mathematical Society Lecture Note Ser., Vol. 252, pp. 209–248. Cambridge University Press, Cambridge (1998)
Linnell, P.A., Puls, M.J.: Zero divisors and \(L^p(G), II\). New York J. Math. 7, 49–58 (2001)
Pollard, H.: The closure of translations in \(L^p\). Proc. Am. Math. Soc. 2, 100–104 (1951)
Puls, M.J.: Zero divisors and \(L^p(G)\). Proc. Am. Math. Soc. 126(3), 721–728 (1998)
Rudin, W.: Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Math., No. 12. Wiley, New York (1962)
Saliani, S.: \(\ell ^2\)-linear independence for the system of integer translates for a square integrable function. Proc. Am. Math. Soc. 141(3), 937–941 (2013)
Segal, I.: The group algebra of a locally compact group. Trans. Am. Math. Soc. 61, 69–105 (1947)
Šikić, H., Slamić, I.: Linear independence and sets of uniqueness. Glas. Mat., III. Ser. 47(2), 415–420 (2012)
Slamić, I.: \(\ell ^p\)-linear independence of the system of integer translates. J. Fourier Anal. Appl. 20(4), 766–783 (2014)
Slamić, I.: \(\ell ^2(G)\)-linear independence for systems generated by dual integrable representations of LCA groups. Collect. Math. 68(3), 323–337 (2017)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Slamić, I. \(\ell ^p(G)\)-Linear Independence and p-Zero Divisors. Mediterr. J. Math. 15, 120 (2018). https://doi.org/10.1007/s00009-018-1167-z
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-018-1167-z
Keywords
- Bracket function
- cyclic vector
- dual integrable representation
- \(\ell ^p(G)\)-linear independence
- zero divisor