Skip to main content
Log in

\(\ell ^p(G)\)-Linear Independence and p-Zero Divisors

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let T be a dual integrable representation of a countable discrete LCA group G, acting on a Hilbert space \({\mathcal {H}}\). We consider the problem of characterizing \(\ell ^p(G)\)-linear independence (\(p\ne 2\)) of the system \(\{T_{k}\psi :k\in G\}\) for the given \(\psi \in {\mathcal {H}}\), which we previously studied in the context of the integer translates of a square integrable function. The extensions of the known results for translates to this setting are obtained using a slightly different approach, through which we show that, under certain conditions, this problem is related to the ‘Wiener’s closure of translates’ problem and the problem of the existence of p-zero divisors, arising around the zero divisor conjecture in algebra. Using this connection, we also obtain several improvements for the case of the integer translates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ash, J.M., Wang, G.: Uniqueness questions for multiple trigonometric series. Contemp. Math. 444, 129–165 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for Heisenberg group and the characterization of cyclic subspaces. Appl. Comput. Harmon. Anal. 37(2), 218–234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal. 39(3), 369–399 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barbieri, D., Hernandez, E., Paternostro, V.: The Zak transform and the structure of spaces invariant by the action of an LCA group. J. Funct. Anal. 269(5), 1327–1358 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Edwards, R.E.: Spans of translates in \(L^p(G)\). J. Austral. Math. Soc. 5, 216–233 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  6. Figà-Talamanca, A., Gaudry, G.I.: Multipliers and sets of uniqueness of \(L^{p}\). Mich. Math. J. 17, 179–191 (1970)

    Article  MATH  Google Scholar 

  7. Folland, G.B.: A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  8. Heil, C.E., Powell, A.M.: Gabor Schauder bases and the Balian-Low theorem. J. Math. Phys. 47 (2006)

  9. Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform. Colloq. Math. 118(1), 313–332 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herz, C.S.: A note on span of translations in \(L^p\). Proc. Am. Math. Soc. 8, 724–727 (1957)

    MATH  Google Scholar 

  11. Kahane, J.-P., Salem, R.: Ensembles parfaits et séries trigonométriques. Hermann (1994)

  12. Lev, N., Olevskii, A.: Wiener’s ‘closure of translates’ problem and Piatetski-Shapiro’s uniqueness phenomenon. Ann. Math. (2) 174(1), 519–541 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Linnell, P.A.: Zero divisors and group von Neumann algebras. Pac. J. Math. 149, 349–363 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Linnell, P.A: Analytic versions of the Zero Divisor Conjecture. In: Kropholler, P.H., Niblo, G.A., Stöhr, R. (Eds.) Geometry and Cohomology in Group Theory. London Mathematical Society Lecture Note Ser., Vol. 252, pp. 209–248. Cambridge University Press, Cambridge (1998)

  15. Linnell, P.A., Puls, M.J.: Zero divisors and \(L^p(G), II\). New York J. Math. 7, 49–58 (2001)

    MathSciNet  MATH  Google Scholar 

  16. Pollard, H.: The closure of translations in \(L^p\). Proc. Am. Math. Soc. 2, 100–104 (1951)

    MATH  Google Scholar 

  17. Puls, M.J.: Zero divisors and \(L^p(G)\). Proc. Am. Math. Soc. 126(3), 721–728 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rudin, W.: Fourier Analysis on Groups, Interscience Tracts in Pure and Applied Math., No. 12. Wiley, New York (1962)

    Google Scholar 

  19. Saliani, S.: \(\ell ^2\)-linear independence for the system of integer translates for a square integrable function. Proc. Am. Math. Soc. 141(3), 937–941 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Segal, I.: The group algebra of a locally compact group. Trans. Am. Math. Soc. 61, 69–105 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  21. Šikić, H., Slamić, I.: Linear independence and sets of uniqueness. Glas. Mat., III. Ser. 47(2), 415–420 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Slamić, I.: \(\ell ^p\)-linear independence of the system of integer translates. J. Fourier Anal. Appl. 20(4), 766–783 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Slamić, I.: \(\ell ^2(G)\)-linear independence for systems generated by dual integrable representations of LCA groups. Collect. Math. 68(3), 323–337 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivana Slamić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slamić, I. \(\ell ^p(G)\)-Linear Independence and p-Zero Divisors. Mediterr. J. Math. 15, 120 (2018). https://doi.org/10.1007/s00009-018-1167-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1167-z

Keywords

Mathematics Subject Classification

Navigation