Abstract
Some concepts, such as non-compactness measure and condensing operators, defined on metric spaces are extended to uniform spaces. Such extensions allow us to locate, in the context of uniform spaces, some classical results existing in nonlinear analysis. Applications of our results are given for multi-valued operators defined on locally convex spaces. The main aim of this work is to unify some well-known results existing in complete metric and vector topological spaces.
Similar content being viewed by others
References
Amini, A., Fakhar, J., Zafarani, J.: Fixed point theorems for the class S-KKM mappings in abstract convex spaces. Nonlinear Anal. Theory Methods Appl. 66(1), 14–21 (2007)
Atkin, C.J.: Boundedness in uniform spaces, topological groups, and homogeneous spaces. Acta Mathematica Hugarica 57(3–4), 213–232 (1991)
Banach, S.: Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrales. Fundamenta Mathematicae 3(1), 133–181 (1922)
Bourbaki, N.: Elements of Mathematics, General Topology. Part 1. Hermann, Paris (1966)
Bourbaki, N.: Elements of Mathematics, General Topology. Part 2. Hermann, Paris (1966)
Brøndsted, A.: On a lemma of Bishop and Phelps. Pac. J. Math. 55(2), 335–341 (1974)
Brouwer, L.E.J.: Über abbildungen von mannigfaltigkeiten. Mathematische Annalen 70, 161–115 (1912)
Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Springer, Berlin (1977)
Castaing, Ch.: Sur les multi-applications mesurables. Reveu française d’informatique et de recherche opérationnelle 1(1), 91–126 (1967)
Darbo, G.: Punti uniti in transformazioni a codominio non compacto. Rendiconti del Seminario Matematico della Università di Padova, Tome 24, 84–92 (1955)
Dhompongsa, S., Inthakon, W., Kaewkhao, A.: Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 350(1), 12–17 (2009)
Espínola, R., Kirk, W.A.: Fixed points and approximate fixed points in product spaces. Taiwan. J. Math. 5(2), 405–416 (2001)
Fang, J.X.: The variational principle and fixed point theorems in certain topological spaces. J. Math. Anal. Appl. 202(2), 398–4120 (1996)
Fierro, R., Martínez, C., Orellana, E.: Weak conditions for existence of random fixed points. Fixed Point Theory 12(1), 83–90 (2011)
Furi, M., Vignoli, A.: Fixed points for densifying mappings. Rendiconti Accademia Nazionale Lincei 47(6), 465–467 (1969)
Hamel, A.H.: Equivalents to Ekeland’s variational principle in uniform spaces. Nonlinear Anal. Theory Methods Appl. 62(5), 913–924 (2005)
Hamel, A.H., Löhne, A.: A minimal point theorem in uniform spaces. In: Agarwal, R.P., O’Regan, D. (eds.) Nonlinear Analysis and Applications: To V. Lakshmikantham on his 80th Birthday, vol. 1, pp. 577–593. Kluwer Academic Publisher, Dordrecht (2003)
Hejcman, J.: Boundedness in uniform spaces and topological groups. Czechoslov. Math. J. 9(4), 544–563 (1959)
Himmelberg, C.J., Porter, J.R., Van Vleck, F.S.: Fixed point theorems for condensing multifunctions. Proc. Am. Math. Soc. 23, 635–641 (1969)
Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)
Kuratowski, C.: Sur les espaces complets. Fundamenta Mathematicae 15, 301–309 (1930)
Mizoguchi, N.: A generalization of Brøndsted’s results and its applications. Proc. Am. Math. Soc. 108(3), 707–714 (1990)
Mizoguchi, N., Takahashi, W.: Fixed point theorems for multivalued mappings on complete metric spaces. J. Math. Anal. Appl. 141(1), 177–188 (1989)
Reich, S., Zaslavski, A.J.: Approximate fixed points of nonexpansive mappings in unbounded sets. J. Fixed Point Theory Appl. 13(2), 627–632 (2013)
Sadovskii, B.N.: A fixed point principle. J. Funct. Anal. Appl. 1(2), 151–153 (1977)
Saint-Raymond, J.: Topologie sur l’ensemble des compacts non vides d’un espace topologique séparé. Séminaire Choquet, Tome 9 (2, exp No. 21):1–6 (1969/70)
Schauder, J.: Der fixpunktsatz in funktionalrumen. Studia Math. 2, 171–180 (1930)
Suzuki, T.: Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 340(2), 1088–1095 (2008)
Tarafdar, E.: An approach to fixed-point theorems on uniform spaces. Trans. Am. Math. Soc. 74, 209–225 (1974)
Tychonoff, A.: Ein fixpunktsatz. Mathematische Annalen 111, 767–776 (1935)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fierro, R. Noncompactness Measure and Fixed Points for Multi-Valued Functions on Uniform Spaces. Mediterr. J. Math. 15, 95 (2018). https://doi.org/10.1007/s00009-018-1140-x
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-018-1140-x