Skip to main content
Log in

On the Arithmetic and Geometric Means of the First n Prime Numbers

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we establish explicit upper and lower bounds for the ratio of the arithmetic and geometric means of the first n prime numbers, which improve the current best estimates. Furthermore, we prove several conjectures related to this ratio stated by Hassani. To do this, we use explicit estimates for the prime counting function, Chebyshev’s \(\vartheta \)-function, and the sum of the first n primes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axler, C.: On a sequence involving prime numbers. J. Integer Seq. 18(7), Article 15.7.6 (2015)

  2. Axler, C.: New bounds for the sum of the first \(n\) prime numbers. J. Théor. Nombres Bordeaux (to appear)

  3. Axler, C.: New estimates for some functions defined over primes. Integers (to appear)

  4. Axler, C.: Estimates for \(\pi (x)\) for large values of \(x\) and Ramanujan’s prime counting inequality. Integers (to appear)

  5. Axler, C.: New estimates for the \(n\)th prime number (2017) (preprint). arXiv:1706.03651

  6. Brüdern, J.: Einführung in die analytische Zahlentheorie, Springer Lehrbuch (1995)

  7. Büthe, J.: An analytic method for bounding \(\psi (x)\). Math. Comput. (to appear)

  8. Cipolla, M.: La determinazione assintotica dell’ \(n^{imo}\) numero primo. Rend. Accad. Sci. Fis-Mat. Napoli (3) 8, 132–166 (1902)

    MATH  Google Scholar 

  9. Dusart, P.: Inégalités explicites pour \(\psi (X)\), \(\theta (X)\), \(\pi (X)\) et les nombres premiers. C. R. Math. Acad. Sci. Soc. R. Can. 21(2), 53–59 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Dusart, P.: The \(k\)-th prime is greater than \(k(\ln k + \ln \ln k - 1)\) for \(k \ge 2\). Math. Comput. 68(225), 411–415 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Hassani, M.: On the ratio of the arithmetic and geometric means of the prime numbers and the number \(e\). Int. J. Number Theory 9(6), 1593–1603 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kourbatov, A.: On the geometric mean of the first \(n\) primes (2016) (preprint). arXiv:1603.00855

  13. Panaitopol, L.: An inequality concerning the prime numbers. Notes Number Theory Discret. Math. 5(2), 52–54 (1999)

    MathSciNet  Google Scholar 

  14. Panaitopol, L.: A formula for \(\pi (x)\) applied to a result of Koninck-Ivić. Nieuw Arch. Wiskd. (5) 1(1), 55–56 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Rivera, C. (ed.): Conjecture 67. Primes and \(e\) (2010). http://primepuzzles.net/conjectures/conj_067.htm

  16. Rosser, J.B., Schoenfeld, L.: Approximate formulas for some functions of prime numbers. Ill. J. Math. 6(1), 64–94 (1962)

    MathSciNet  MATH  Google Scholar 

  17. Sándor, J.: On certain bounds and limits for prime numbers. Notes Number Theory Discret. Math. 18(1), 1–5 (2012)

    MATH  Google Scholar 

  18. Sándor, J., Verroken, A.: On a limit involving the product of prime numbers. Notes Number Theory Discret. Math. 17(2), 1–3 (2011)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Axler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Axler, C. On the Arithmetic and Geometric Means of the First n Prime Numbers. Mediterr. J. Math. 15, 93 (2018). https://doi.org/10.1007/s00009-018-1137-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1137-5

Keywords

Mathematics Subject Classification

Navigation