Advertisement

Enumerating Some Stable Partitions Involving Stirling and r-Stirling Numbers of the Second Kind

  • H. Belbachir
  • M. A. Boutiche
  • A. Medjerredine
Article

Abstract

The coefficient of the chromatic polynomial counts the number of partitions of the vertex set of a simple and finite graph G into k independent vertex sets, equivalently, it gives the number of proper colorings of G with exactly k colors subject to some constraints. In this work, we study this invariant, we establish new formulas in this context for some families of graphs and we treat some specific cases as Thorn graphs. Consequently, we derive identities for the classical Stirling numbers of the second kind, besides that, this gives rise to new explicit formulae for the r-Stirling numbers of the second kind.

Keywords

Stirling numbers of the second kind r-stirling numbers of the second kind chromatic polynomial stables set partitions independent partitions generating functions graphical stirling numbers deletion–contraction principle thorn graphs 

Mathematics Subject Classification

Primary 11B73 05C15 Secondary 05C30 05A18 05A19 11B83 11B39 

References

  1. 1.
    Belbachir, H., Bousbaa, I.E.: Associated Lah numbers and r-Stirling numbers. arxiv:1404.5573v1 (2014)
  2. 2.
    Belbachir, H., Harik, H.: Link between hosoya index and Fibonacci numbers. to appear in Miskolc. Math. Notes, MMN-1415Google Scholar
  3. 3.
    Belbachir, H., Harik, H., Pirzada, S.: Determining Lucas identities by using Hosoya index. Creat. Math. 26(2), 145–151 (2017)Google Scholar
  4. 4.
    Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. Harvard Coll. 14, 42–46 (1912)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Brandstädt, A., Le, V.B., Spinard, J.P.: Graph Classes A Survey. Society for Industrial and Applied Mathematics, Pheladelphia (1999)CrossRefGoogle Scholar
  6. 6.
    Broder, A.Z.: The r-Stirling numbers. Discret. Math. 49, 241–259 (1984)CrossRefzbMATHGoogle Scholar
  7. 7.
    Charalambides, C.: Enumerative Combinatorics. CRC Press, Boca Raton (2002)zbMATHGoogle Scholar
  8. 8.
    Comtet, L.: Advanced Combinatorics: The Art of Finite and Infinite Expansions. Springer Science and Business Media, New York (1974)CrossRefzbMATHGoogle Scholar
  9. 9.
    Dong, F.M., Koh, K.M., Teo, K.L.: Chromatic Polynomials and Chromaticity of Graphs. World Scientic, Singapore (2005)CrossRefzbMATHGoogle Scholar
  10. 10.
    Duncan, B., Peele, R.: Bell and Stirling numbers for graphs. J. Integer Seq. 12, 09.7.1 (2009)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Galvin, D., Thanh, D.T.: Stirling numbers of forests and cycles. Electron. J. Comb. 20(1), P73 (2013)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Goldman, J., Joichi, J., White, D.: Rook Theory III. Rook polynomials and the chromatic structure of graphs. J. Comb. Theory Ser. 25, 135–142 (1978)Google Scholar
  13. 13.
    Hertz, A., Melot, H.: Counting the number of non-equivalent vertex colorings of a graph. Discret. Appl. Math. 203, 62–71 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kereskényi-Balogh, Z., Nyul, G.: Stirling numbers of the second kind and Bell numbers for graphs. Australas. J. Comb. 58(2), 264–274 (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Maamra, M.S., Mihoubi, M.: Some applications of the chromatic polynomials. (2015). arXiv:1402.0731v1
  16. 16.
    Maamra, M.S., Mihoubi, M.: Note on some restricted Stirling numbers of the second kind. Comptes Rendus Mathematique 354(3), 231–234 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Mohr, A., Porter, T.D.: Applications of chromatic polynomials involving Stirling numbers. J. Comb. Math. Comb. Comput. 70, 57–64 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Prodinger, H., Tichy, R.: Fibonacci numbers of graphs. Fibonacci Q. 20(1), 16–21 (1982)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Riordan, J.: An Introduction to Combinatorial Analysis. Wiley, New York (1958)zbMATHGoogle Scholar
  20. 20.
    Voloshin, V.I.: Coloring Mixed Hypergraphs. Theory, Algorithms and Applications (AMS and Fields Institute Monographs). AMS, Providence (2002)Google Scholar
  21. 21.
    Yang, W.: Bell numbers and k-trees. Discret. Math. 156, 247–252 (1996)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • H. Belbachir
    • 1
  • M. A. Boutiche
    • 2
  • A. Medjerredine
    • 1
  1. 1.USTHB, Faculty of MathematicsRECITS LaboratoryBab EzzouarAlgeria
  2. 2.USTHB, Faculty of MathematicsLaROMaD LaboratoryBab EzzouarAlgeria

Personalised recommendations