Skip to main content
Log in

Characterization of Curves that Lie on a Geodesic Sphere or on a Totally Geodesic Hypersurface in a Hyperbolic Space or in a Sphere

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The consideration of the so-called rotation minimizing frames allows for a simple and elegant characterization of plane and spherical curves in Euclidean space via a linear equation relating the coefficients that dictate the frame motion. In this work, we extend these investigations to characterize curves that lie on a geodesic sphere or totally geodesic hypersurface in a Riemannian manifold of constant curvature. Using that geodesic spherical curves are normal curves, i.e., they are the image of an Euclidean spherical curve under the exponential map, we are able to characterize geodesic spherical curves in hyperbolic spaces and spheres through a non-homogeneous linear equation. Finally, we also show that curves on totally geodesic hypersurfaces, which play the role of hyperplanes in Riemannian geometry, should be characterized by a homogeneous linear equation. In short, our results give interesting and significant similarities between hyperbolic, spherical, and Euclidean geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benedetti, R., Petronio, C.: Lectures on Hyperbolic Geometry. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  2. Bishop, R.L.: There is more than one way to frame a curve. Am. Math. Mon. 82, 246–251 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloomenthal, J., Riesenfeld, R.F.: Approximation of sweep surfaces by tensor product NURBS. In: Silbermann, M.J., Tagare, H.D., (eds.) SPIE Proceedings, Curves and Surfaces in Computer Vision and Graphics II, vol. 1610, pp. 132–154. International Society for Optics and Photonics (1991)

  4. Bölcskei, A., Szilágyi, B.: Frenet formulas and geodesics in Sol geometry. Beitr. Algebra Geom. 48, 411–421 (2007)

    MathSciNet  MATH  Google Scholar 

  5. Cartan, E.: Leçons sur la géométrie des espaces de Riemann, 2ème edn. Gauthier-Villars, Paris (1946)

    MATH  Google Scholar 

  6. Castrillón López, M., Fernández Mateos, V., Muñoz Masqué, J.: The equivalence problem of curves in a Riemannian manifold. Ann. Mat. 194, 343–367 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. Castrillón López, M., Muñoz Masqué, J.: Invariants of Riemannian curves in dimensions 2 and 3. Differ. Geom. Appl. 35, 125–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chen, B.Y.: When does the position vector of a space curve always lie in its rectifying plane? Am. Math. Mon. 110, 147–152 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, B.Y.: Rectifying curves and geodesics on a cone in the Euclidean 3-space. Tamkang J. Math. 48, 1 (2017)

    Article  MathSciNet  Google Scholar 

  10. Chen, B.Y.: Topics in differential geometry associated with position vector fields on Euclidean submanifolds. Arab J. Math. Sci. 23, 1–17 (2017)

    MathSciNet  MATH  Google Scholar 

  11. da Silva, L.C.B.: Characterization of spherical and plane curves using rotation minimizing frames (2017). arXiv:1706.01577v3

  12. da Silva, L.C.B.: Moving frames and the characterization of curves that lie on a surface. J. Geom. 108, 1091 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Boston (1992)

    Book  MATH  Google Scholar 

  14. Etayo, F.: Rotation minimizing vector fields and frames in Riemannian manifolds. In: Castrillón López, M., Hernández Encinas, L., Martínez Gadea, P., Rosado María, M.E. (eds.) Geometry, Algebra and Applications: From Mechanics to Cryptography, Springer Proceedings in Mathematics and Statistics, vol. 161, pp. 91–100. Springer, Berlin (2016)

    Google Scholar 

  15. Etayo, F.: Geometric properties of rotation minimizing vector fields along curves in Riemannian manifolds. Turk. J. Math. 42, 121 (2018)

    Article  Google Scholar 

  16. Farouki, R.T.: Pythagorean-Hodograph Curves: Algebra and Geometry Inseparable. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  17. Gökçelik, F., Bozkurt, Z., Gök, I., Ekmekci, F.N., Yaylı, Y.: Parallel transport frame in 4-dimensional Euclidean space E\(^4\). Caspian J. Math. Sci. 3, 91–103 (2014)

    MathSciNet  Google Scholar 

  18. Guggenheimer, H.W.: Computing frames along a trajectory. Comput. Aided Geom. Des. 6, 77–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gutkin, E.: Curvatures, volumes and norms of derivatives for curves in Riemannian manifolds. J. Geom. Phys. 61, 2147–2161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kreyszig, E.: Differential Geometry. Dover, New York (1991)

    MATH  Google Scholar 

  21. Kreyszig, E., Pendl, A.: Spherical curves and their analogues in affine differential geometry. Proc. Am. Math. Soc. 48, 423–428 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kühnel, W.: Differentialgeometrie: Kurven–Flächen–Mannigfaltigkeiten 5. Auflage. Vieweg+Teubner (2010)

  23. Lucas, P., Ortega-Yagües, J.A.: Rectifying curves in the three-dimensional sphere. J. Math. Anal. Appl. 421, 1855–1868 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lucas, P., Ortega-Yagües, J.A.: Rectifying curves in the three-dimensional hyperbolic space. Mediterr. J. Math. 13, 2199–2214 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Murphy, T., Wilhelm, F.: Random manifolds have no totally geodesic submanifolds. https://arxiv.org/abs/1703.09240 (To appear in Michigan Math. J.)

  26. Nikolayevsky, Y.: Totally geodesic hypersurfaces of homogeneous spaces. Israel J. Math. 207, 361–375 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pottmann, H., Wagner, M.: Contributions to motion based surface design. Int. J. Shape Model. 4, 183–196 (1998)

    Article  Google Scholar 

  28. Reynolds, W.F.: Hyperbolic geometry on a hyperboloid. Am. Math. Mon. 100, 442–455 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  29. Siltanen, P., Woodward, C.: Normal orientation methods of 3D offset curves, sweep surfaces and skinning. Comput. Graph. Forum 11, 449–457 (1992)

    Article  Google Scholar 

  30. Spivak, M.: A comprehensive introduction to differential geometry, vol. 4, 2nd edn. Publish or Perish, Houston (1979)

    MATH  Google Scholar 

  31. Szilágyi, B., Virosztek, D.: Curvature and torsion of geodesics in three homogeneous Riemannian 3-geometries. Stud. Univ. Žilina Math. Ser. 16, 1–7 (2003)

    MATH  Google Scholar 

  32. Tsukada, K.: Totally geodesic submanifolds of Riemannian manifolds and curvature-invariant subspaces. Kodai Math. J. 19, 395–437 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, W., Jüttler, B., Zheng, D., Liu, Y.: Computation of rotation minimizing frames. ACM Trans. Graph. 27, Article 2 (2008)

  34. Wong, Y.: A global formulation of the condition for a curve to lie on a sphere. Monatsh. Math. 67, 363–365 (1963)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Gilson S. Ferreira-Júnior and Gabriel G. Carvalho for useful discussions, the anonymous Referees for their suggestions which have improved the quality of the text, and also the financial support provided by Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq (Brazilian agency).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luiz C. B. da Silva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, L.C.B., da Silva, J.D. Characterization of Curves that Lie on a Geodesic Sphere or on a Totally Geodesic Hypersurface in a Hyperbolic Space or in a Sphere. Mediterr. J. Math. 15, 70 (2018). https://doi.org/10.1007/s00009-018-1109-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1109-9

Mathematics Subject Classification

Keywords

Navigation