Skip to main content
Log in

On the Reverse Orlicz Blaschke–Santal\(\acute{\mathrm{o}}\) Inequality

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, the Orlicz centroid body defined by Lutwak, Yang and Zhang and the extrema of some affine invariant functionals involving the volume of the Orlicz centroid body are investigated. The reverse form of the Orlicz Blaschke–Santal\(\acute{\mathrm{o}}\) inequalities is obtained for two-dimensional convex sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. W. Blaschke, Affine Geometrie IX: Verschiedene Bemerkungen und Aufgaben, Ber. Verh. Sächs. Akad. Leipzig, Math. Phys. Kl., 69 (1917), 412–420

  2. Bourgain, J., Milman, V.: New volume ratio properties for convex symmetric bodies in \(\mathbb{R}^{n}\). Invent. Math. 88, 319–340 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  3. Campi, S., Gronchi, P.: On volume product inequalities for convex sets. Proc. Am. Math. Soc. 134, 2393–2402 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campi, S., Gronchi, P.: On the reverse \(L_{p}\)-Busemann–Petty centroid inequality. Mathematika 49, 1–11 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, F., Zhou, J., Yang, C.: On the reverse Orlicz Busemann–Petty centroid inequality. Adv. Appl. Math. 47, 820–828 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gardner, R.J.: Geometric Tomography. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  7. Gordon, Y., Meyer, M., Reisner, S.: Zonoids with minimal volume-product-A new proof. Proc. AMS. 104, 273–276 (1988)

    MathSciNet  MATH  Google Scholar 

  8. Haberl, C., Lutwak, E., Yang, D., Zhang, G.: The even Orlicz Minkowski problem. Adv. Math. 224, 2485–2510 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Li, A., Leng, G.: A new proof of the Orlicz Busemann–Petty centroid inequality. Proc. Am. Math. Soc. 139, 1473–1481 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Lutwak, E.: Selected affine isoperimetric inequalities. In: Gruber, M., Will, J.M. (eds.) Handbook of Convex Geometry, pp. 151–176. North-Holland, Amsterdam (1993)

    Chapter  Google Scholar 

  11. Lutwak, E., Zhang, G.: Blaschke-Santaló inequalities. J. Differ. Geom. 47, 1–16 (1997)

    Article  MATH  Google Scholar 

  12. Lutwak, E., Yang, D., Zhang, G.: Orlicz projection bodies. Adv. Math. 223, 220–242 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lutwak, E., Yang, D., Zhang, G.: Orlicz centroid bodies. J. Differ. Geom. 84, 365–387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lutwak, E., Yang, D., Zhang, G.: \(L_{p}\)-affine isoperimetric inequalities. J. Differ. Geom. 56, 111–132 (2000)

    Article  MATH  Google Scholar 

  15. Mahler, K.: Ein Übertragungsprinzip für konvexe Körper. Casopis Pêst. Mat. Fys. 68, 93–102 (1939)

    MathSciNet  MATH  Google Scholar 

  16. Mahler, K.: Ein Minimalproblem für konvexe Polygone, Mathematica (Zutphen) B7, 118–127 (1939)

  17. Meyer, M.: Convex bodies with minimal volume product in \(\mathbb{R}^{2}\). Monatsh. Math. 112, 297–301 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Petty, C.M.: Centroid surfaces. Pac. J. Math. 11, 1535–1547 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  19. Petty, C.M..: Ellipsoids. In Gruber, P.M., Wills, J.M. (eds.) Convexity and its Applications, pp. 264–276. Birkhäuser, Basel (1983)

  20. Raymond, S.: Sur le volume des corps convexes symetriques, Sem. d’Initiation à l’Analyse 11 (1980–1981)

  21. Reisner, S.: Random polytopes and the volume product of symmetric convex bodies. Math. Scand. 57, 386–392 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  22. Reisner, S.: Zonoids with minimal volume product. Math. Z. 192, 339–346 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rogers, C.A., Shephard, G.C.: Some extremal problems for convex bodies. Mathematika 5, 93–102 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shephard, G.C.: Shadow system of convex sets. Israel J. Math. 2, 229–236 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhu, G.: The Orlicz centroid inequality for star bodies. Adv. Appl. Math. 48, 432–445 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We would like to thank the referees for valuable suggestions and comments that lead to improvement of the original manuscript. In addition, we would like to thank Dr. Weichi Wu for his helpful help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongyi Ma.

Additional information

This work is supported by the National Natural Science Foundations of China (Grant Nos.11561020, 11161019) and is partly supported by the National Natural Science Foundations of China (Grant No. 11371224). E-mail: matongyi@126.com (Tongyi Ma).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, T. On the Reverse Orlicz Blaschke–Santal\(\acute{\mathrm{o}}\) Inequality. Mediterr. J. Math. 15, 32 (2018). https://doi.org/10.1007/s00009-018-1081-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1081-4

Keywords

AMS Subject Classification

Navigation