Skip to main content
Log in

Reciprocal Function Series Coefficients with Integer Partitions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We obtain an explicit formula in terms of the partitions of the positive integer n to express the nth coefficient of the formal series expansion of the reciprocal of a given function. A brief survey shows that our arithmetic proof differs from others, some obtained already in the XIX century. Examples are given to establish explicit formulas for Bernoulli, Euler, and Fibonacci numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brioschi, F.: Sulle funzioni Bernoulliane ed Euleriane. Annali di Matematica Pura ed Applicata 1, 260–263 (1858) (in Italian). https://doi.org/10.1007/BF03197335

  2. Comtet, L.: Advanced combinatorics. Reidel, Dordrecht (1974)

    Book  MATH  Google Scholar 

  3. Fergola, E.: Dell’espressione di una derivata qualunque di una funzione in termini delle derivate della funzione inversa. Memorie della Reale Accademia delle Scienze di Napoli 1, 200–206 (1856). (in Italian)

    Google Scholar 

  4. Fergola, E.: Sopra lo sviluppo della funzione \(1/(c e^x-1)\), e sopra una nuova espressione dei numeri di Bernoulli. Memorie della Reale Accademia delle Scienze di Napoli 2, 315–324 (1857). (in Italian)

    Google Scholar 

  5. Flajolet, P., Szpankowski, W.: Analytic Variations on Redundancy Rates of Renewal Processes. IEEE Trans. Inf. Theory 48, 2911–2921 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Flajolet, P., Sedgewick, R.: Analytic combinatorics. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  7. Hernández Encinas, L., del Rey, A.M., Masqué, J.M.: Faà di Bruno’s formula, lattices, and partitions. Discrete Appl. Math. 148, 246–255 (2005)

  8. Johnson, W.P.: The curious history of Faà di Bruno’s formula. Amer. Math. Monthly 109, 217–234 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Kowalenko, V.: Applications of the cosecant and related numbers. Acta Appl. Math. 114, 15–134 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kowalenko, V.: The partition method for a power series expansion. Theory and applications. Academic Press/Elsevier, London (2017)

    MATH  Google Scholar 

  11. Lucas, É.: Théorie des nombres. Gauthier-Villars, Paris (1891)

    MATH  Google Scholar 

  12. Malenfant, J.: Finite closed-form expressions for the partition function and for Euler, Bernoulli, and Stirling numbers. arXiv:1103.1585v6 [math.NT] 1–19 (2011)

  13. Scherk, H.F.: Mathematische Abhandlungen. G. Reimer, Berlin (1825) (in German). https://hdl.handle.net/2027/hvd.hnxxhh. Accessed on 30 Jan 2018

  14. Stanley, R.P.: Enumerative combinatorics, Vol. 1, Second edition. Cambridge studies in advanced mathematics 49. Cambridge University Press, Cambridge (2012)

  15. Sylvester, J.J.: A note on the theory of a point in partitions. In report of the 41st meeting of the British association for the advancement of science, held at Edinburgh in August 1871. Notices and abstracts 23–25. J. Murray, London, (1872). https://www.biodiversitylibrary.org/page/29362553#page/353/mode/1up. Accessed on 30 Jan 2018

  16. Vella, D.C.: Explict formulas for Bernoulli and Euler numbers. Integers 8, 1–7 (2008)

    Google Scholar 

  17. Wilf, H.S.: Generatingfunctionology, 3rd edn. A. K. Peters, Wellesley (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorino Talamini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fera, G., Talamini, V. Reciprocal Function Series Coefficients with Integer Partitions. Mediterr. J. Math. 15, 29 (2018). https://doi.org/10.1007/s00009-018-1076-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1076-1

Keywords

Mathematics Subject Classification

Navigation