Skip to main content
Log in

The Well-Posedness of Dynamical Equations of Magneto-electro-elasticity

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A mathematical model of wave propagation in magneto-electro-elastic materials is obtained in the form of a symmetric hyperbolic system of the first-order partial differential equations. This model is a result of the qualitative analysis of the coupled time-dependent Maxwell’s equations and equations of elastodynamics which are considered together with constitutive relations in non-homogeneous anisotropic magneto-electro-elastic materials. Applying the theory and methods of symmetric hyperbolic systems, we have proved that the reported model of wave propagation in magneto-electro-elastic materials satisfies the Hadamards correctness requirements: solvability, uniqueness and stability with respect to perturbation of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Duc, N.H., Giang, D.T.H.: Magnetic sensors based on piezoelectric-magnetostrictive composites. J. Alloy. Compd. 449, 214–218 (2008)

    Article  Google Scholar 

  2. Bayrashev, A., Robins, W.P., Ziaie, B.: Low frequency wireless powering of microsystems using piezoelectricmagnetostrictive laminate composite. Sens. Actuators A 114, 244–249 (2004)

    Article  Google Scholar 

  3. Vopsaroiu, M., Blackburn, J., Cain, M.G.: A new magnetic recording read head technology based on the magnetoelectric effect. J. Phys. D Appl. Phys. 40, 5027–5033 (2007)

    Article  Google Scholar 

  4. Sebald, G., Guyomar, D., Agbossou, A.: On thermoelectric and pyroelectric energy harvesting. Smart Mater. Struct. 18, 125006 (2009)

    Article  Google Scholar 

  5. Kim, J.Y.: Micromechanical analysis of effective properties of magneto-electro-thermo-elastic multilayer composites. Int. J. Eng. Sci. 49, 1001–1018 (2011)

    Article  MATH  Google Scholar 

  6. Aboudi, J.: Micromechanical analysis of fully coupled electro-magneto-thermo-elastic multiphase composites. Smart Mater. Struct. 10, 867–877 (2001)

    Article  Google Scholar 

  7. Pan, E.: Exact solution for simply supported and multilayered magneto-electro-elastic plates. J. Appl. Mech. T. ASME 68, 608–618 (2001)

    Article  MATH  Google Scholar 

  8. Buchanan, G.R.: Layered versus multiphase magneto-electro-elastic composites. Compos. Part B Eng. 35, 413–420 (2004)

    Article  Google Scholar 

  9. Abreu, G.L., Ribeiro, J.F., Steffen Jr., V.: Finite element modeling of a plate with localized piezoelectric sensors and actuators. J. Braz. Soc. Mech. Sci. Eng. 26, 117–128 (2004)

    Article  Google Scholar 

  10. Pan, E., Han, F.: Exact solution for functionally graded and layered magneto-electro-elastic plates. Int. J. Eng. Sci. 43, 321–339 (2005)

    Article  Google Scholar 

  11. Kapuria, S., Achary, G.G.S.: Exact 3D piezoelasticity solution of hybrid cross-ply plates with damping under harmonic mechanical loads. J. Sound Vib. 282, 617–634 (2005)

    Article  Google Scholar 

  12. Ramirez, F., Heyliger, P.R., Pan, E.: Free vibration response of two-dimensional magneto-electro-elastic laminated plates. J. Sound Vib. 292, 626–644 (2006)

    Article  Google Scholar 

  13. Chen, J., Pan, E., Chen, H.: Wave propagation in magneto-electro-elastic multilayered plates. Int. J. Solids Struct. 44, 1073–1085 (2007)

    Article  MATH  Google Scholar 

  14. Liu, J.X., Fang, D.N., Wei, W.Y., Zhao, X.F.: Love waves in layered piezoelectric/piezomagnetic structures. J. Sound Vib. 315, 146–156 (2008)

    Article  Google Scholar 

  15. Huang, D.J., Ding, H.J., Chen, W.Q.: Static analysis of anisotropic functionally graded magneto-electro-elastic beams subjected to arbitrary loading. Eur. J. Mech. A/Solids 29, 356–369 (2010)

    Article  Google Scholar 

  16. Wu, C.P., Chen, S.J., Chiu, K.H.: Three static behavior of functionally graded magneto-electro-elastic plates using the modified Pagano method. Mech. Res. Commun. 37, 54–60 (2010)

    Article  MATH  Google Scholar 

  17. Wu, C.P., Chiu, K.H., Jiang, R.Y.: A meshless collocation method for the coupled analysis of functionally graded piezo-thermo-elastic shells and plates under thermal loads. Int. J. Eng. Sci. 56, 29–48 (2012)

    Article  MathSciNet  Google Scholar 

  18. Biju, B., Ganesan, N., Shankar, K.: Dynamic response of multiphase magneto-electro-elastic sensors using 3D magnetic vector potential approach. IEEE Sens. J. 11, 2169–2176 (2011)

    Article  Google Scholar 

  19. Chen, H., Yu, W.: A multiphysics model for magneto-electro-elastic laminates. Eur. J. Mech. A/Solids 47, 23–44 (2014)

    Article  MathSciNet  Google Scholar 

  20. Chen, J., Guo, J., Pan, E.L.: Reflection and transmission of plane wave in multilayered nonlocal magneto-electro-elastic plates immersed in liquid. Compos. Struct. https://doi.org/10.1016/j.compstruct.2016.11.004 (2016)

  21. Chen, P., Shen, Y.: Propagation of axial shear magneto-electro-elastic waves in piezoelectric and piezomagnetic composites with randomly distributed cylindrical inhomogeneities. Int. J. Solids Struct. 44, 1511–1532 (2007)

    Article  MATH  Google Scholar 

  22. Tsai, Y.H., Wu, C.P.: Dynamic responses of functionally graded magnetoelectro-elastic shells with open-circuit surface conditions. Int. J. Eng. Sci. 46, 843–857 (2008)

    Article  MATH  Google Scholar 

  23. Diaz, R.R., Saez, A., Sanchez, F.G., Zhang, F.G.: Time-harmonic Greens functions for anisotropic magnetoelectroelasticity. Int. J. Solids Struct. 45, 144–158 (2008)

    Article  MATH  Google Scholar 

  24. Wang, B.L., Mai, Y.W.: Fracture of piezoelectromagnetic materials. Mech. Res. Commun. 31, 65–73 (2004)

    Article  MATH  Google Scholar 

  25. Goldberg, J.L.: Matrix Theory with Applications. McGrawHill International Editions, New York (1992)

    Google Scholar 

  26. Mizohata, J.: The Theory of Partial Differential Equations. Cambridge University Press, New York (1973)

    MATH  Google Scholar 

  27. Evans, L.C.: Partial Differential Equations, 19, Graduate Studies in Mathematics. American Mathematical Society, Providence (2002)

    Google Scholar 

  28. Staffans, O.: Well-posed Linear Systems, Encyclopedia of Mathematics and Its Applications, vol. 103. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Yakhno.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakhno, V. The Well-Posedness of Dynamical Equations of Magneto-electro-elasticity. Mediterr. J. Math. 15, 21 (2018). https://doi.org/10.1007/s00009-018-1065-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-018-1065-4

Mathematics Subject Classification

Keywords

Navigation