Skip to main content
Log in

Existence Criteria and Expressions of the (bc)-Inverse in Rings and Their Applications

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let R be a ring. Existence criteria for the (bc)-inverse are given. We present explicit expressions for the (bc)-inverse by using inner inverses. We answer the question when the (bc)-inverse of \(a\in R\) is an inner inverse of a. As applications, we give a unified theory of some well-known results of the \(\{1,3\}\)-inverse, the \(\{1,4\}\)-inverse, the Moore–Penrose inverse, the group inverse and the core inverse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baksalary, O.M., Trenkler, G.: Core inverse of matrices. Linear Multilinear Algebra 58, 681–697 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ben-Israel, A., Greville, T.N.E.: Generalized Inverses: Theory and Applications, 2nd edn. Springer, New York (2003)

    MATH  Google Scholar 

  3. Benítez, J., Boasso, E., Jin, H.W.: On one-sided \((B,C)\)-inverses of arbitrary matrices. Electron. J. Linear Algebra 32, 391–422 (2017). arXiv:1701.09054v1

  4. Boasso, E., Kantún-Montiel, G.: The \((b,c)\)-inverses in rings and in the Banach context. Mediterr. J. Math. 14, 112 (2017). https://doi.org/10.1007/s00009-017-0910-1

    Article  MathSciNet  MATH  Google Scholar 

  5. BhaskaraRao, K.R.S.: The Theory of Generalized Inverses over Commutative Rings. Taylor and Francis, London (2002)

    Google Scholar 

  6. Campbell, S.L., Meyer, C.D.: Generalized Inverses of Linear Transformations. Pitman, London (1979)

    MATH  Google Scholar 

  7. Drazin, M.P.: A class of outer generalized inverses. Linear Algebra Appl. 436, 1909–1923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Drazin, M.P.: Left and right generalized inverses. Linear Algebra Appl. 510, 64–78 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Green, J.A.: On the structure of semigroups. Ann. Math. 54(1), 163–172 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hartwig, R.E.: Block generalized inverses. Arch. Ration. Mech. Anal. 61, 197–251 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  11. Han, R.Z., Chen, J.L.: Generalized inverses of matrices over rings. Chin. Q. J. Math. 7(4), 40–49 (1992)

    MATH  Google Scholar 

  12. Ke, Y.Y., Cvetković-Ilić, D.S., Chen, J.L., Višnjić J.: New results on \((b, c)\)-inverses. Linear Multilinear Algebra. https://doi.org/10.1080/03081087.2017.1301362

  13. Ke, Y.Y., Višnjić, J., Chen, J.L.: One-sided \((b, c)\)-inverses in rings (2016). arXiv:1607.06230v1

  14. Mary, X.: On generalized inverse and Green’s relations. Linear Algebra Appl. 434, 1836–1844 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mary, X., Patrício, P.: Generalized inverses modulo \(\cal{H}\) in semigroups and rings. Linear Multilinear Algebra 61(8), 1130–1135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. von Neumann, J.: On regular rings. Proc. Natl. Acad. Sci. USA 22(12), 707–713 (1936)

    Article  MATH  Google Scholar 

  17. Rakić, D.S.: A note on Rao and Mitra’s constrained inverse and Drazin’s (b, c) inverse. Linear Algebra Appl. 523, 102–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rakić, D.S., Dinčić, N.Č., Djordjević, D.S.: Group, Moore–Penrose, core and dual core inverse in rings with involution. Linear Algebra Appl. 463, 115–133 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Rao, C.R., Mitra, S.K.: Generalized inverse of a matrix and its application. In: Proceedings of the Sixth Berkeley Symposium on Mathematics, Statistics and Probability, vol. 1, pp. 601–620. University of California Press, Berkeley (1972)

  20. Wei, Y.M.: A characterization and representation of the generalized inverse \(A^{(2)}_{T, S}\) and its applications. Linear Algebra Appl. 280, 87–96 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wang, L., Chen, J.L., Castro-González, N.: Characterizations of the \((b, c)\)-inverse in a ring (2015). arXiv:1507.01446v1

  22. Xu, S.Z., Chen, J.L., Zhang, X.X.: New characterizations for core inverses in rings with involution. Front. Math. China 12(1), 231–246 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanzhang Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Benítez, J. Existence Criteria and Expressions of the (bc)-Inverse in Rings and Their Applications. Mediterr. J. Math. 15, 14 (2018). https://doi.org/10.1007/s00009-017-1056-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-1056-x

Keywords

Mathematics Subject Classification

Navigation