Advertisement

Lightlike Hypersurfaces of a Golden Semi-Riemannian Manifold

  • Nergiz Önen Poyraz
  • Erol Yaşar
Article

Abstract

We introduce lightlike hypersurfaces of a golden semi-Riemannian manifold. We investigate several properties of lightlike hypersurfaces of a golden semi-Riemannian manifold. We prove that there is no radical anti-invariant lightlike hypersurface of a golden semi-Riemannian manifold. In particular, we obtain some results for screen semi-invariant lightlike hypersurfaces of a golden semi-Riemannian manifold. Moreover, we study screen conformal screen semi-invariant lightlike hypersurfaces.

Keywords

Golden semi-Riemannian manifolds golden structure lightlike hypersurface screen semi-invariant lightlike hypersurfaces 

Mathematics Subject Classification

53C15 53C25 53C50 57N16 

References

  1. 1.
    Atindogbe, C., Duggal, K.L.: Conformal screen on lightlike hypersurfaces. Int. J. Pure Appl. Math. 11(4), 421–442 (2004)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Bejancu, A.: Null hypersurface in semi-Euclidean space. Saitama Math. J. 14, 25–40 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Chen, B.Y.: Geometry of Submanifolds, p. 305s. M. Dekker, Newyork (1973)Google Scholar
  4. 4.
    Crasmareanu, M., Hretcanu, C.E.: Golden differential geometry. Chaos Solitons Fractals 38(5), 1229–1238 (2008)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Crasmareanu, M., Hretcanu, C.E.: Applications of the golden ratio on Riemannian manifolds. Tübitak. Turk. J. Math. 33, 179–191 (2009)zbMATHGoogle Scholar
  6. 6.
    Duggal, K.L., Bejancu, A.: Lightlike Submanifold of Semi-Riemannian Manifolds and Applications. Kluwer Academic Pub, The Netherlands (1996)CrossRefzbMATHGoogle Scholar
  7. 7.
    Duggal, K.L., Jin, D.H.: Null Curves and Hypersurfaces of Semi-Riemannian Manifolds. World Scientific, Singapore (2007)CrossRefzbMATHGoogle Scholar
  8. 8.
    Duggal, K.L., Jin, D.H.: A classification of Einstein lightlike hypersurfaces of a Lorentzian space form. J. Geom. Phys. 60(12), 1881–1889 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Duggal, K.L., Şahin, B.: Differential Geometry of Lightlike Submanifolds. Birkhäuser Verlag AG, Boston (2010)CrossRefzbMATHGoogle Scholar
  10. 10.
    Gezer, A., Cengiz, N., Salimov, A.: On integrability of golden Riemannian structures. Turk J. Math. 37, 693–703 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Guneş, R., Şahin, B., Kılıç, E.: On lightlike hypersurfaces of semi-Riemannian space form. Turkish J. Math. 27, 283–297 (2003)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Hretcanu, C.E., Crasmareanu, M.: On some invariant submanifolds in a Riemannian manifold with Golden structure. An. Ş tiint. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) 53(suppl. 1), 199–211 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Jin, D.H.: Screen conformal Einstein lightlike hypersurfaces of a Lorentzian space form. Commun. Korean Math. Soc. 25, 225–234 (2010). (Submitted)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Jin, D.H.: Screen conformal lightlike hypersurfaces of an indefinite complex space form. Bull. Korean Math. Soc. 47(2), 341–353 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kılıç, E., Oğuzhan, B.: Lightlike hypersurfaces of a semi-Riemannian product manifold and quarter-symmetric nonmetric connections. Int. J. Math. Math, Sci (2012)zbMATHGoogle Scholar
  16. 16.
    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, London (1983)zbMATHGoogle Scholar
  17. 17.
    Özkan, M.: Prolongations of golden structures to tangent bundles. Differ. Geom. Dyn. Syst. 16, 227–238 (2014)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Perktaş, S.Y., Kılıç, E., Acet, B.E.: Lightlike hypersurfaces of a Para-Sasakian space form. Gulf J. Math. 2(2), 7–18 (2014)zbMATHGoogle Scholar
  19. 19.
    Şahin, B., Akyol, M.A.: Golden maps betwen Golden Riemannian manifolds and constancy of certain maps. Math. Commun. 19(2), 333–342 (2014)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Yano, K., Kon, M.: Structure on manifolds. World Scientific Publishing Co.Ltd, Singapore (1984)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of MathematicsCukurova UniversityAdanaTurkey
  2. 2.Departmet of MathematicsMersin UniversityMersinTurkey

Personalised recommendations