Skip to main content

On the Geometry of Almost Golden Riemannian Manifolds

Abstract

An almost Golden Riemannian structure \((\varphi ,g)\) on a manifold is given by a tensor field \(\varphi \) of type (1,1) satisfying the Golden section relation \(\varphi ^{2}=\varphi +1\), and a pure Riemannian metric g, i.e., a metric satisfying \(g(\varphi X,Y)=g(X,\varphi Y)\). We study connections adapted to such a structure, finding two of them, the first canonical and the well adapted, which measure the integrability of \(\varphi \) and the integrability of the G-structure corresponding to \((\varphi ,g)\).

This is a preview of subscription content, access via your institution.

References

  1. Crasmareanu, M., Hreţcanu, C.E.: Golden differential geometry. Chaos Solitons Fractals 38(5), 1229–1238 (2008)

    Article  MathSciNet  Google Scholar 

  2. de Spinadel, V.W.: The metallic means family and the multifractal spectra. Nonlinear Anal. 36(6), 721–745 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. El Naschie, M.S.: The VAK of vacuum fluctuation: spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum. Chaos Solitons Fractals 18(2), 401–420 (2003)

    Article  MATH  Google Scholar 

  4. Etayo, F., Santamaría, R.: The well adapted connection of a \((J^2=\pm 1)\)-metric manifold. RACSAM 111(2), 355–375 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Etayo, F., Santamaría, R.: Distinguished connections on \((J^{2}=\pm 1)\)-metric manifolds. Arch. Math. Brno 52(3), 159–203 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gezer, A., Cengiz, N., Salimov, A.: On integrability of Golden Riemannian structures. Turk. J. Math. 37, 693–703 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Goldberg, S.I., Yano, K.: Polynomial structures on manifolds. Kodai Math. Sem. Rep. 22(2), 199–218 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  8. Huntley, H.E.: The Divine Proportion: A Study in Mathematical Beauty. Dover Publications, New York (1970)

    MATH  Google Scholar 

  9. Ianus, S.: Some almost product structures on manifolds with linear connections. Kodai Math. Sem. Rep. 23(3), 305–310 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Livio, M.: The Golden Ratio: The Story of Phi: the World’s Most Astonishing Number. Broadway Books, New York (2002)

    MATH  Google Scholar 

  11. Muñoz, Masqué J., Valdés, A.: A report on functorial connections and differential invariants. Rend. Mat. Roma 17, 549–567 (1997)

    MathSciNet  MATH  Google Scholar 

  12. Salimov, A., Iscan, M., Etayo, F.: Paraholomorphic \(B\)-manifold and its properties. Topol. Appl. 154, 925–933 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sierra, J.M., Valdés, A.: A canonical connection associated with certain \(G\)-structures. Czech. Math. J. 47(1), 73–82 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stakhov, A.P.: Fundamentals of a new kind of mathematics based on the Golden section. Chaos Solitons Fractals 27(5), 1124–1146 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Yano, K.: Affine connexions in an almost product space. Kodai Math. Sem. Rep. 11(1), 1–24 (1959)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Santamaría.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Etayo, F., Santamaría, R. & Upadhyay, A. On the Geometry of Almost Golden Riemannian Manifolds. Mediterr. J. Math. 14, 187 (2017). https://doi.org/10.1007/s00009-017-0991-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0991-x

Mathematics Subject Classification

  • Primary 53C15
  • Secondary 53C07
  • 53C10

Keywords

  • Almost Golden structure
  • pure Riemannian metric
  • adapted connection
  • first canonical connection
  • well-adapted connection