Skip to main content
Log in

Classifying First Extremal Points for a Fractional Boundary Value Problem with a Fractional Boundary Condition

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \(n\in \mathbb {N}\), \(n\ge 2\), \(\beta >0\) fixed, and \(0<b\le \beta \). For \(n-1<\alpha \le n\), we look to classify extremal points for the fractional differential equation \(D_{0^+}^{\alpha }u+p(t) u=0\), satisfying the boundary conditions \(u^{(i)}(0)=0\), \(i=0,\ldots ,n-2\), \(D_{0^+}^\gamma u(b)=0\), where p(t) is a continuous nonnegative function on \([0,\beta ]\) which does not vanish identically on any nondegenerate compact subinterval of \([0,\beta ]\). Using the theory of Krein and Rutman, first extremal points of this boundary value problem are classified. As an application, the results are applied, along with a fixed-point theorem, to show the existence of a solution of a nonlinear fractional boundary value problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev. 18, 620–709 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Deimling, K.: Nonlinear Functional Analysis. Springer, New York (1985)

    Book  MATH  Google Scholar 

  3. Eloe, P.W., Hankerson, D., Henderson, J.: Positive solutions and conjugate points for multipoint boundary value problems. J. Differ. Equ. 95, 20–32 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Eloe, P.W., Hankerson, D., Henderson, J.: Positive solutions and \(j\)-focal points for two point boundary value problems. Rocky Mt. J. Math. 22, 1283–1293 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eloe, P.W., Henderson, J., Thompson, H.B.: Extremal points for impulsive Lidstone boundary value problems. Math. Comput. Model. 32, 687–698 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Eloe, P.W., Lyons, J.W., Neugebauer, J.T.: An ordering on Green’s functions for a family of two-point boundary value problems for a fractional differential equation. Commun. Appl. Anal. 19, 453–462 (2015)

    Google Scholar 

  7. Eloe, P.W., Neugebauer, J.T.: Existence and comparison of smallest eigenvalues for a fractional boundary value problem. Electron. J. Differ. Equ. 2014, 1–10 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Eloe, P.W., Neugebauer, J.T.: Conjugate points for fractional differential equations. Fract. Calc. Appl. Anal. 17, 855–871 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karna, B.: Extremal points for the fourth order boundary value problems. Math. Sci. Res. J. 7, 382–393 (2003)

    MathSciNet  MATH  Google Scholar 

  10. Keener, M., Travis, C.C.: Positive cones and focal points for a class of nth order differential equations. Trans. Am. Math. Soc. 237, 331–351 (1978)

    MATH  Google Scholar 

  11. King, S.S., Neugebauer, J.T.: Smallest eigenvalues, extremal points, and positive solutions of a fourth order three point boundary value problem. Dyn. Syst. Appl. 23, 699–713 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Koester, A.N., Neugebauer, J.T.: Smallest eigenvalues for a fractional boundary value problem with a fractional boundary condition. J. Nonlinear Funct. Anal., 1–16 (2017) (Article ID 1)

  13. Krasnoselskii, M., Solutions, Positive, of Operator Equations. Fizmatgiz, Moscow (1962) [English Translation P. Noordhoff Ltd., Groningen, The Netherlands (1964)]

  14. Krein, M.G., Rutman, M.A.: Linear operators leaving a cone invariant in a Banach space. In: Translations American Mathematical Society Series 1, vol. 10, pp. 199–325. American Mathematical Society, Providence (1962)

  15. Neugebauer, J.T.: Existence and comparison of smallest eigenvalue and extremal points for a three point boundary value problem. Math. Sci. Res. J. 16(9), 222–233 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Nussbaum, R.D.: Periodic solutions of some nonlinear integral equations. In: Proceedings International Conference on Differential Equations, Gainesville, FL (1976)

  17. Schmitt, K., Smith, H.L.: Positive solutions and conjugate points for systems of differential equations. Nonlinear Anal. 2, 93–105 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  18. Yang, A., Henderson, J., Nelms Jr., C.: Extremal points for a higher-order fractional boundary-value problem. Electron. J. Differ. Equ. 161, 1–12 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey T. Neugebauer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neugebauer, J.T. Classifying First Extremal Points for a Fractional Boundary Value Problem with a Fractional Boundary Condition. Mediterr. J. Math. 14, 171 (2017). https://doi.org/10.1007/s00009-017-0974-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0974-y

Mathematics Subject Classification

Keywords

Navigation