Skip to main content
Log in

The Time-Periodic Solutions to the Modified Zakharov Equations with a Quantum Correction

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This paper investigates the existence and uniqueness of time-periodic solutions of the periodic initial value problem for the modified Zakharov equations with a quantum correction. By combining a priori estimates with the Galerkin method and Leray–Schauder fixed point theorem, we prove that there exist a unique strong time-periodic solution and a unique classical time-periodic solution under some conditions on the forcing terms f and g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zakharov, V.E.: Collapse of Langmuir waves. Soc. Phys. JETP. 35, 908–914 (1972)

    Google Scholar 

  2. Makhankov, V.G.: Dynamics of classical solitons (in non-integrable systems). Phys. Rep. 35(1), 1–128 (1978)

    Article  MathSciNet  Google Scholar 

  3. Ma, S., Chang, Q.S.: Strange attractors on psendospectral solutions for disspative Zakharov equations. Acta Math. Sci. 24B(3), 321–336 (2004)

    Google Scholar 

  4. Pecher, H.: An improved local well-posedness result for the one-dimensional Zakharov system. J. Math. Anal. Appl. 342, 1440–1454 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zheng, X.X., Shang, Y.D., Peng, X.M.: Orbital stability of periodic traveling wave solutions to the generalized Zakharov equations. Acta Math. Sci. 37B(4), 998–1018 (2017)

    Article  MathSciNet  Google Scholar 

  6. You, S.J.: The posedness of the periodic initial value problem for generalized Zakharov equations. Nonlinear Anal. 71, 3571–3584 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Linares, F., Matheus, C.: Well posedness for the 1D Zakharov-Rebenchik system. Adv. Differ. Equ. 14, 261–288 (2009)

    MATH  Google Scholar 

  8. Guo, B.L., Zhang, J.J., Pu, X.K.: On the existence and uniqueness of smooth solution for a generalized Zakharov equation. J. Math. Anal. Appl. 365, 238–253 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Guo, B.L., Gan, Z.H., Zhang, J.J.: Zakharov Equation and Its Solitary Wave Solutions. Science Press, Beijing (2011)

    Google Scholar 

  10. Garcia, L.G., Haas, F., Oliveira, L.P.L., Goedert, J.: Modified Zakharov equations for plasmas with a quantum correction. Phys. Plamas 12, 012302 (2005)

    Article  Google Scholar 

  11. Marklund, M.: Classical and quantum kinetics of the Zakharov system. Phys. Plamas 12, 082110 (2005)

    Article  MathSciNet  Google Scholar 

  12. Marklund, M., Shukla, P.K.: Nonlinear collective effects in photon-photon and photon-plasma interactions. Rev. Mod. Phys. 78(2), 591–640 (2006)

    Article  Google Scholar 

  13. Yang, Q., Dai, C.Q., Wang, Y.Y., Zhang, J.F.: Quantum soliton solutions of quantum Zakharov equations for plasmas. J. Phys. Soc. Jpn. 74, 2492 (2006)

    Article  MATH  Google Scholar 

  14. Wang, Y.Y., Yang, Q., Dai, C.Q., Zhang, J.F.: Solitary wave solution of Zakharov equation with quantum effect. Acta Phys. Sin. 55(3), 1029–1036 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Haas, F.: Variational approach for the quantum Zakharov system. Phys. Plamas 14, 042309 (2007)

    Article  Google Scholar 

  16. Tang, X.Y., Shukla, P.: Lie symmetry analysis of the quantum Zakharov equations. Phys. Scr. 76, 665–668 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Haas, F., Shukla, P.K.: Quantum and classical dynamics of Langmuir wave packets. Phys. Rev. E 79, 066402 (2009)

    Article  Google Scholar 

  18. Simpson, G., Sulem, C., Sulem, P.L.: Arrest of Langmuir wave collapse by quantum effects. Phys. Rev. E 80, 056405 (2009)

    Article  Google Scholar 

  19. Dubinov, A.E., Kitayev, I.N.: New solutions of the Zakharov’s equation system for quantum plasmas in form of nonlinear bursts lattice. Phys. Plasmas 21, 022309 (2014)

    Article  Google Scholar 

  20. Fang, S.M., Guo, C.H., Guo, B.L.: Exact traveling wave solutions of modified Zakharov equations for plasmas with a quantum correction. Acta Math. Sci. 32B(3), 1073–1082 (2012)

    MathSciNet  MATH  Google Scholar 

  21. Fang, S.M., Jin, L.Y., Guo, B.L.: Existence of weak solution for quantum Zakharov equationsfor plasmas model. Appl. Math. Mech. 32(10), 1339–1344 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. You, S.J., Guo, B.L., Ning, X.Q.: Initial boundary value problem for modified Zakharov equations. Acta Math. Sci. Ser. B 32(4), 1455–1466 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Guo, Y.F., Zhang, J.J., Guo, B.L.: Global well-posedness and the classical limit of the solution for the quantum Zakharov system. Z. Angew. Math. Phys. 64, 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Guo, Y.F., Zhang, J.J., Guo, C.X.: Attractors and dimension estimates for the dissipative quantum Zakharov equations. Adv. Math. 39(6), 765–767 (2010)

    MathSciNet  Google Scholar 

  25. Guo, Y.F., Guo, B.L., Li, D.L.: Asymptotic behaviors of solutions for dissipative quantum Zakharov equations. Appl. Math. Mech. 33(4), 511–524 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jin, L.Y., Fang, S.M., Guo, B.L.: Existence of attractors for modified Zakharov equations for plasmas with a quantum correction. J. Math. Phys. 53(7), 072703 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guo, C.H., Fang, S.M., Guo, B.L.: Long time behavior of the solutions for the dissipative modified Zakharov equations for plasmas with a quantum correction. J. Math. Anal. Appl. 403(1), 183–192 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Guo, Y.F., Guo, B.L., Li, D.L.: Asymptotic behavior of stochastic dissipative quantumZakharov equations. Stoch. Dyn. 13(2), 1250016 (2013)

    Article  MathSciNet  Google Scholar 

  29. Liang, Y.Y., Li, C.J., Zhao, C.D.: Existence of compact kernel sections and the Kolmogorov entropy for the lattice Zakharov equations with a quantum correction. Acta Math. Sci. Ser. 34 A(5), 1203–1218 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Guo, B.L.: The existence of global solution and blow up phenomenon for a system of multi dimensional symmetric regularized wave equations. Acta Math. Appl. Sin. 8(1), 60–72 (1992)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxiao Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Shang, Y. & Di, H. The Time-Periodic Solutions to the Modified Zakharov Equations with a Quantum Correction. Mediterr. J. Math. 14, 152 (2017). https://doi.org/10.1007/s00009-017-0952-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0952-4

Mathematics Subject Classification

Keywords

Navigation