Skip to main content

Heat Conduction Problem in a Dilated Pipe: Existence and Uniqueness Result

Abstract

We study the heat conduction through a pipe filled with incompressible viscous fluid. The goal of this paper is to take into account the effects of the spipe’s dilatation due to the heating. In view of that, we assume that the longitudinal dilatation of the pipe is described by a linear heat expansion law. We prove the existence and uniqueness theorems for the corresponding boundary value problem. The main difficulty comes from the fact that the flow domain changes depending on the solution of the heat equation leading to a nonlinear coupled governing problem.

This is a preview of subscription content, access via your institution.

References

  1. Al-Zaharnah, I.: Thermal Stresses in Pipes. Ph.D. thesis, Dublin City University (2002)

  2. Trabucho, L., Viaño, J.M.: Mathematical Modelling of Rods. Handbook of Numerical Analysis, Vol IV, pp. 487–974. Elsevier, Amsterdam (1996)

  3. Bernardi, C., Métivet, B., Pernaud-Thomas, B.: Couplage des équations de Navier–Stokes et de la chaleur: le mod\(\grave{e}\)le et son approximation par éléments finis. Math. Model Numer. Anal. 29, 871–921 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  4. Roubiček, T.: Steady-state bouyancy-driven viscous flow with measure data. Math. Bohem. 126, 457–493 (2001)

    MathSciNet  Google Scholar 

  5. Naumann, J.: Existence of weak solutions to the equations of stationary motion of heat-conducting incompressible viscous fluids. Progress Nonlin. Differ. Equ. 64, 373–390 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Marušić, S., Marušić-Paloka, E., Pažanin, I.: Effects of strong convection on the cooling process for a long or thin pipe. C. R. Mécanique 336, 493–499 (2008)

  7. Marušić-Paloka, E., Pažanin, I.: Non-isothermal fluid flow through a thin pipe with cooling. Appl. Anal. 88, 495–515 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Marušić-Paloka, E., Pažanin, I.: Modelling of heat transfer in a laminar flow through a helical pipe. Math. Comput. Model 50, 1571–1582 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Marušić-Paloka, E., Pažanin, I.: On the effects of curved geometry on heat conduction through a distorted pipe. Nonlinear Anal. RWA 11, 4554–4564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Pažanin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Marušić-Paloka, E., Pažanin, I. & Prša, M. Heat Conduction Problem in a Dilated Pipe: Existence and Uniqueness Result. Mediterr. J. Math. 14, 97 (2017). https://doi.org/10.1007/s00009-017-0898-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0898-6

Mathematics Subject Classification

  • 35J40
  • 35Q35
  • 76D03

Keywords

  • heat conduction
  • dilated pipe
  • linear heat expansion law
  • existence and uniqueness of the solution