Abstract
In this paper, we consider a Cauchy problem for nonlinear fractional differential equation with constant coefficient \(\lambda >0\) of the type: \({^c}{D}^{\alpha }x(t)=\lambda x(t)+f(t,x(t))\) with \(x(0)=x_{0}.\) The aim of this paper is to investigate the existence and interval of existence of solutions, uniqueness, continuous dependence of solutions on initial conditions, estimates on solutions and continuous dependence on parameters and functions involved in the equations. Finally, one illustrative example is given to demonstrate the theoretical results.
Similar content being viewed by others
References
Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012). doi:10.1007/978-1-4614-4036-9
Aghajani, A., Pourhadi, E., Trujillo, J.: Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces. Fract. Calculus Appl. Anal. 16(4), 962–977 (2013). doi:10.2478/s13540-013-0059-y
Anastassiou, G.: Advances on Fractional Inequalities. Springer, New York (2011)
Balachandran, K., Park, J.Y.: Nonlocal Cauchy problem for abstract fractional semilinear evolution equations. Nonlinear Anal. 71(10), 4471–4475 (2009). doi:10.1016/j.na.2009.03.005
Baleanu, D., Güvenç, Z., Machado, J.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2000). doi:10.1007/978-90-481-3293-5
Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. World Scientific, New York (2012)
Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, New York (2010)
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002). doi:10.1006/jmaa.2000.7194
Furati, K.M., Tatar, N.: Long time behavior for a nonlinear fractional model. J. Math. Anal. Appl. 332(1), 441–454 (2007). doi:10.1016/j.jmaa.2006.10.027
Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New York (2000)
Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, 204th edn. Elsevier, Amsterdam (2006)
Kucche, K.D., Nieto, J.J., Venktesh, V.: Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dyn. Syst. 1–7 (2016). doi:10.1007/s12591-016-0297-7
Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)
Liang, J., Liu, Z., Wang, X.: Solvability for a couple system of nonlinear fractional differential equations in a Banach space. Fract. Calculus Appl. Anal. 16(1), 54–63 (2013). doi:10.2478/s13540-013-0004-0
Luchko, Y.U.R.I.I., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)
N’Guérékata, G.M.: A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal. 70(5), 1873–1876 (2009). doi:10.1016/j.na.2008.02.087
N’Guérékata, G.M.: Corrigendum: a Cauchy problem for some fractional differential equations. Commun. Math. Anal. 7(1), 11 (2009)
Nieto, J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville–Caputo derivative. Mathematics 3(2), 398–411 (2015). doi:10.3390/math3020398
Peng, S., Wang, J.: Cauchy problem for nonlinear fractional differential equations with positive constant coefficient. J. Appl. Math. Comput. 51(1), 341–351 (2016). doi:10.1007/s12190-015-0908-4
Pierri, M., O’Regan, D.: On non–autonomous abstract nonlinear fractional differential equations. Appl. Anal. 94(5), 879–890 (2015). doi:10.1080/00036811.2014.905679
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Ren, Y., Qin, Y., Sakthivel, R.: Existence results for fractional order semilinear integro-differential evolution equations with infinite delay. Integr. Equ. Oper. Theory 16(1), 33–49 (2010). doi:10.1007/s00020-010-1767-x
Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)
Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. Higher Education Press, Heidelberg (2010)
Tidke, H.L.: Some theorems on fractional semilinear evolution equations. J. Appl. Anal. 18(2), 209–224 (2012). doi:10.1515/jaa-2012-0014
Zhou, Y., Shen, X.H., Zhang, L.: Cauchy problem for fractional evolution equations with Caputo derivative. Eur. Phys. J. Spec. Top. 222(8), 1749–1765 (2013). doi:10.1140/epjst/e2013-01961-5
Zhou, Y., Jiao, F., Pečarić, J.: Abstract Cauchy problem for fractional functional differential equations. Topol Methods Nonlinear Anal. 42(1), 119–136 (2013)
Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 11(5), 4465–4475 (2010). doi:10.1016/j.nonrwa.2010.05.029
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tate, S., Dinde, H.T. Some Theorems on Cauchy Problem for Nonlinear Fractional Differential Equations with Positive Constant Coefficient. Mediterr. J. Math. 14, 72 (2017). https://doi.org/10.1007/s00009-017-0886-x
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-017-0886-x
Keywords
- Cauchy problem
- Fractional differential equation
- Existence of solution
- Continuous dependence
- Fixed point theorem
- Integral inequalities