Skip to main content
Log in

Some Theorems on Cauchy Problem for Nonlinear Fractional Differential Equations with Positive Constant Coefficient

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a Cauchy problem for nonlinear fractional differential equation with constant coefficient \(\lambda >0\) of the type: \({^c}{D}^{\alpha }x(t)=\lambda x(t)+f(t,x(t))\) with \(x(0)=x_{0}.\) The aim of this paper is to investigate the existence and interval of existence of solutions, uniqueness, continuous dependence of solutions on initial conditions, estimates on solutions and continuous dependence on parameters and functions involved in the equations. Finally, one illustrative example is given to demonstrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., N’Guérékata, G.M.: Topics in Fractional Differential Equations. Springer, New York (2012). doi:10.1007/978-1-4614-4036-9

    Book  MATH  Google Scholar 

  2. Aghajani, A., Pourhadi, E., Trujillo, J.: Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces. Fract. Calculus Appl. Anal. 16(4), 962–977 (2013). doi:10.2478/s13540-013-0059-y

    MathSciNet  MATH  Google Scholar 

  3. Anastassiou, G.: Advances on Fractional Inequalities. Springer, New York (2011)

    Book  MATH  Google Scholar 

  4. Balachandran, K., Park, J.Y.: Nonlocal Cauchy problem for abstract fractional semilinear evolution equations. Nonlinear Anal. 71(10), 4471–4475 (2009). doi:10.1016/j.na.2009.03.005

    Article  MathSciNet  MATH  Google Scholar 

  5. Baleanu, D., Güvenç, Z., Machado, J.: New Trends in Nanotechnology and Fractional Calculus Applications. Springer, New York (2000). doi:10.1007/978-90-481-3293-5

    Google Scholar 

  6. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus. Models and Numerical Methods. World Scientific, New York (2012)

    Book  MATH  Google Scholar 

  7. Diethelm, K.: The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type. Springer, New York (2010)

    Book  MATH  Google Scholar 

  8. Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 265(2), 229–248 (2002). doi:10.1006/jmaa.2000.7194

    Article  MathSciNet  MATH  Google Scholar 

  9. Furati, K.M., Tatar, N.: Long time behavior for a nonlinear fractional model. J. Math. Anal. Appl. 332(1), 441–454 (2007). doi:10.1016/j.jmaa.2006.10.027

    Article  MathSciNet  MATH  Google Scholar 

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, New York (2000)

    Book  MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, 204th edn. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  12. Kucche, K.D., Nieto, J.J., Venktesh, V.: Theory of nonlinear implicit fractional differential equations. Differ. Equ. Dyn. Syst. 1–7 (2016). doi:10.1007/s12591-016-0297-7

  13. Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

    MATH  Google Scholar 

  14. Liang, J., Liu, Z., Wang, X.: Solvability for a couple system of nonlinear fractional differential equations in a Banach space. Fract. Calculus Appl. Anal. 16(1), 54–63 (2013). doi:10.2478/s13540-013-0004-0

    MathSciNet  Google Scholar 

  15. Luchko, Y.U.R.I.I., Gorenflo, R.: An operational method for solving fractional differential equations with the Caputo derivatives. Acta Math. Vietnam. 24(2), 207–233 (1999)

    MathSciNet  MATH  Google Scholar 

  16. N’Guérékata, G.M.: A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal. 70(5), 1873–1876 (2009). doi:10.1016/j.na.2008.02.087

    Article  MathSciNet  MATH  Google Scholar 

  17. N’Guérékata, G.M.: Corrigendum: a Cauchy problem for some fractional differential equations. Commun. Math. Anal. 7(1), 11 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Nieto, J., Ouahab, A., Venktesh, V.: Implicit fractional differential equations via the Liouville–Caputo derivative. Mathematics 3(2), 398–411 (2015). doi:10.3390/math3020398

    Article  MATH  Google Scholar 

  19. Peng, S., Wang, J.: Cauchy problem for nonlinear fractional differential equations with positive constant coefficient. J. Appl. Math. Comput. 51(1), 341–351 (2016). doi:10.1007/s12190-015-0908-4

    Article  MathSciNet  MATH  Google Scholar 

  20. Pierri, M., O’Regan, D.: On non–autonomous abstract nonlinear fractional differential equations. Appl. Anal. 94(5), 879–890 (2015). doi:10.1080/00036811.2014.905679

    Article  MathSciNet  MATH  Google Scholar 

  21. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  22. Ren, Y., Qin, Y., Sakthivel, R.: Existence results for fractional order semilinear integro-differential evolution equations with infinite delay. Integr. Equ. Oper. Theory 16(1), 33–49 (2010). doi:10.1007/s00020-010-1767-x

    Article  MathSciNet  MATH  Google Scholar 

  23. Samko, S., Kilbas, A., Marichev, O.: Fractional Integrals and Derivatives. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  24. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles. Higher Education Press, Heidelberg (2010)

    Book  MATH  Google Scholar 

  25. Tidke, H.L.: Some theorems on fractional semilinear evolution equations. J. Appl. Anal. 18(2), 209–224 (2012). doi:10.1515/jaa-2012-0014

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhou, Y., Shen, X.H., Zhang, L.: Cauchy problem for fractional evolution equations with Caputo derivative. Eur. Phys. J. Spec. Top. 222(8), 1749–1765 (2013). doi:10.1140/epjst/e2013-01961-5

    Article  Google Scholar 

  27. Zhou, Y., Jiao, F., Pečarić, J.: Abstract Cauchy problem for fractional functional differential equations. Topol Methods Nonlinear Anal. 42(1), 119–136 (2013)

    MathSciNet  MATH  Google Scholar 

  28. Zhou, Y., Jiao, F.: Nonlocal Cauchy problem for fractional evolution equations. Nonlinear Anal. 11(5), 4465–4475 (2010). doi:10.1016/j.nonrwa.2010.05.029

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shivaji Tate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tate, S., Dinde, H.T. Some Theorems on Cauchy Problem for Nonlinear Fractional Differential Equations with Positive Constant Coefficient. Mediterr. J. Math. 14, 72 (2017). https://doi.org/10.1007/s00009-017-0886-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0886-x

Keywords

Mathematics Subject Classification

Navigation