Abstract
We complete the problem of finding the universal central extension in the category of Leibniz superalgebras of \(\mathfrak {sl}(m, n, D)\) when \(m+n \ge 3\) and D is a superdialgebra, solving, in particular, the problem when D is an associative algebra, superalgebra, or dialgebra. To accomplish this task, we use a different method than the standard studied in the literature. We introduce and use the non-abelian tensor square of Leibniz superalgebras and its relations with the universal central extension.
Similar content being viewed by others
References
Bloh, A.: On a generalization of the concept of Lie algebra. Dokl. Akad. Nauk SSSR 165, 471–473 (1965)
Brown, R., Loday, J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26(3), 311–335 (1987) (with an appendix by M. Zisman)
Chen, H., Guay, N.: Central extensions of matrix Lie superalgebras over \(\mathbb{Z}/2\mathbb{Z}\)-graded algebras. Algebr. Represent. Theory 16(2), 591–604 (2013)
Chen, H., Sun, J.: Universal central extensions of \(\mathfrak{sl}_{m\vert n}\) over \(\mathbb{Z}/2\mathbb{Z}\)-graded algebras. J. Pure Appl. Algebra 219(9), 4278–4294 (2015)
Ellis, G.J.: A non-abelian tensor product of Lie algebras. Glasgow Math. J. 33(1), 101–120 (1991)
Felipe, R., López-Reyes, N., Ongay, F.: \(R\)-matrices for Leibniz algebras. Lett. Math. Phys. 63(2), 157–164 (2003)
Frabetti, A.: Leibniz homology of dialgebras of matrices. J. Pure Appl. Algebra 129(2), 123–141 (1998)
Gao, Y., Shang, S.: Universal coverings of Steinberg Lie algebras of small characteristic. J. Algebra 311(1), 216–230 (2007)
García-Martínez, X., Khmaladze, E., Ladra, M.: Non-abelian tensor product and homology of Lie superalgebras. J. Algebra 440, 464–488 (2015)
García-Martínez, X., Ladra, M.: Universal central extensions of \(\mathfrak{sl} (m,n,{A})\) of small rank over associative superalgebras. arXiv:1405.4035
Garland, H.: The arithmetic theory of loop groups. Inst. Hautes Études Sci. Publ. Math. 52, 5–136 (1980)
Gnedbaye, A.V.: A non-abelian tensor product of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 49(4), 1149–1177 (1999)
Jiang, Q., Shen, R., Su, Y.: Second homology groups and universal coverings of Steinberg Leibniz algebras of small characteristic. Commun. Algebra 37(2), 548–566 (2009)
Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)
Kassel, C., Loday, J.-L.: Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier (Grenoble) 32(4), 119–142 (1982)
Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Am. J. Math. 123(3), 525–550 (2001)
Kurdiani, R., Pirashvili, T.: A Leibniz algebra structure on the second tensor power. J. Lie Theory 12(2), 583–596 (2002)
Liu, D.: Steinberg–Leibniz algebras and superalgebras. J. Algebra 283(1), 199–221 (2005)
Liu, D., Hu, N.: Steinberg unitary Liebniz algebras. Linear Algebra Appl. 405, 279–303 (2005)
Liu, D., Hu, N.: Leibniz superalgebras and central extensions. J. Algebra Appl. 5(6), 765–780 (2006)
Liu, D., Hu, N.: Universal central extensions of the matrix Leibniz superalgebras \({sl}(m, n, A)\). Commun. Algebra 35(6), 1814–1823 (2007)
Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39(3–4), 269–293 (1993)
Loday, J.-L.: Dialgebras. In: Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763, pp. 7–66. Springer, Berlin (2001)
Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)
Lodder, J.M.: Leibniz cohomology for differentiable manifolds. Ann. Inst. Fourier (Grenoble) 48(1), 73–95 (1998)
Mikhalev, A.V., Pinchuk, I.A.: Universal central extensions of the matrix Lie superalgebras sl(m,n,A). In: Combinatorial and Computational Algebra (Hong Kong, 1999), Contemp. Math., vol. 264, pp. 111–125. Amer. Math. Soc., Providence (2000)
Milnor, J.: Introduction to algebraic \(K\)-theory, Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1971)
Neher, E.: An introduction to universal central extensions of Lie superalgebras. In: Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001), Math. Appl., vol. 555, pp. 141–166. Kluwer Acad. Publ., Dordrecht (2003)
Shang, S., Chen, H., Gao, Y.: Central extensions of Steinberg Lie superalgebras of small rank. Commun. Algebra 35(12), 4225–4244 (2007)
Tuynman, G.M., Wiegerinck, W.A.J.J.: Central extensions and physics. J. Geom. Phys. 4(2), 207–258 (1987)
van der Kallen, W.L.J.: Infinitesimally central extensions of Chevalley groups. Lecture Notes in Mathematics, vol. 356. Springer, Berlin (1973)
Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, vol. 11. American Mathematical Society, Providence (2004)
Author information
Authors and Affiliations
Corresponding author
Additional information
The authors were supported by the Ministerio de Economía y Competitividad (Spain), Grants MTM2013-43687-P and MTM2016-79661-P (European FEDER support included) and by Xunta de Galicia, Grant GRC2013-045 (European FEDER support included). X. García-Martínez was also supported by FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain) and a Fundación Barrié scholarship.
Rights and permissions
About this article
Cite this article
García-Martínez, X., Ladra, M. Universal Central Extensions of Leibniz Superalgebras Over Superdialgebras. Mediterr. J. Math. 14, 73 (2017). https://doi.org/10.1007/s00009-017-0842-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-017-0842-9