Skip to main content
Log in

Universal Central Extensions of Leibniz Superalgebras Over Superdialgebras

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We complete the problem of finding the universal central extension in the category of Leibniz superalgebras of \(\mathfrak {sl}(m, n, D)\) when \(m+n \ge 3\) and D is a superdialgebra, solving, in particular, the problem when D is an associative algebra, superalgebra, or dialgebra. To accomplish this task, we use a different method than the standard studied in the literature. We introduce and use the non-abelian tensor square of Leibniz superalgebras and its relations with the universal central extension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bloh, A.: On a generalization of the concept of Lie algebra. Dokl. Akad. Nauk SSSR 165, 471–473 (1965)

    MathSciNet  Google Scholar 

  2. Brown, R., Loday, J.-L.: Van Kampen theorems for diagrams of spaces. Topology 26(3), 311–335 (1987) (with an appendix by M. Zisman)

  3. Chen, H., Guay, N.: Central extensions of matrix Lie superalgebras over \(\mathbb{Z}/2\mathbb{Z}\)-graded algebras. Algebr. Represent. Theory 16(2), 591–604 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chen, H., Sun, J.: Universal central extensions of \(\mathfrak{sl}_{m\vert n}\) over \(\mathbb{Z}/2\mathbb{Z}\)-graded algebras. J. Pure Appl. Algebra 219(9), 4278–4294 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ellis, G.J.: A non-abelian tensor product of Lie algebras. Glasgow Math. J. 33(1), 101–120 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Felipe, R., López-Reyes, N., Ongay, F.: \(R\)-matrices for Leibniz algebras. Lett. Math. Phys. 63(2), 157–164 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Frabetti, A.: Leibniz homology of dialgebras of matrices. J. Pure Appl. Algebra 129(2), 123–141 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gao, Y., Shang, S.: Universal coverings of Steinberg Lie algebras of small characteristic. J. Algebra 311(1), 216–230 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  9. García-Martínez, X., Khmaladze, E., Ladra, M.: Non-abelian tensor product and homology of Lie superalgebras. J. Algebra 440, 464–488 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  10. García-Martínez, X., Ladra, M.: Universal central extensions of \(\mathfrak{sl} (m,n,{A})\) of small rank over associative superalgebras. arXiv:1405.4035

  11. Garland, H.: The arithmetic theory of loop groups. Inst. Hautes Études Sci. Publ. Math. 52, 5–136 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gnedbaye, A.V.: A non-abelian tensor product of Leibniz algebras. Ann. Inst. Fourier (Grenoble) 49(4), 1149–1177 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jiang, Q., Shen, R., Su, Y.: Second homology groups and universal coverings of Steinberg Leibniz algebras of small characteristic. Commun. Algebra 37(2), 548–566 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kac, V.G.: Lie superalgebras. Adv. Math. 26(1), 8–96 (1977)

    Article  MATH  Google Scholar 

  15. Kassel, C., Loday, J.-L.: Extensions centrales d’algèbres de Lie. Ann. Inst. Fourier (Grenoble) 32(4), 119–142 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kinyon, M.K., Weinstein, A.: Leibniz algebras, Courant algebroids, and multiplications on reductive homogeneous spaces. Am. J. Math. 123(3), 525–550 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Kurdiani, R., Pirashvili, T.: A Leibniz algebra structure on the second tensor power. J. Lie Theory 12(2), 583–596 (2002)

    MATH  MathSciNet  Google Scholar 

  18. Liu, D.: Steinberg–Leibniz algebras and superalgebras. J. Algebra 283(1), 199–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu, D., Hu, N.: Steinberg unitary Liebniz algebras. Linear Algebra Appl. 405, 279–303 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu, D., Hu, N.: Leibniz superalgebras and central extensions. J. Algebra Appl. 5(6), 765–780 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Liu, D., Hu, N.: Universal central extensions of the matrix Leibniz superalgebras \({sl}(m, n, A)\). Commun. Algebra 35(6), 1814–1823 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Loday, J.-L.: Une version non commutative des algèbres de Lie: les algèbres de Leibniz. Enseign. Math. (2) 39(3–4), 269–293 (1993)

  23. Loday, J.-L.: Dialgebras. In: Dialgebras and Related Operads, Lecture Notes in Mathematics, vol. 1763, pp. 7–66. Springer, Berlin (2001)

  24. Loday, J.-L., Pirashvili, T.: Universal enveloping algebras of Leibniz algebras and (co)homology. Math. Ann. 296(1), 139–158 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lodder, J.M.: Leibniz cohomology for differentiable manifolds. Ann. Inst. Fourier (Grenoble) 48(1), 73–95 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Mikhalev, A.V., Pinchuk, I.A.: Universal central extensions of the matrix Lie superalgebras sl(m,n,A). In: Combinatorial and Computational Algebra (Hong Kong, 1999), Contemp. Math., vol. 264, pp. 111–125. Amer. Math. Soc., Providence (2000)

  27. Milnor, J.: Introduction to algebraic \(K\)-theory, Annals of Mathematics Studies, vol. 72. Princeton University Press, Princeton; University of Tokyo Press, Tokyo (1971)

  28. Neher, E.: An introduction to universal central extensions of Lie superalgebras. In: Groups, rings, Lie and Hopf algebras (St. John’s, NF, 2001), Math. Appl., vol. 555, pp. 141–166. Kluwer Acad. Publ., Dordrecht (2003)

  29. Shang, S., Chen, H., Gao, Y.: Central extensions of Steinberg Lie superalgebras of small rank. Commun. Algebra 35(12), 4225–4244 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tuynman, G.M., Wiegerinck, W.A.J.J.: Central extensions and physics. J. Geom. Phys. 4(2), 207–258 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  31. van der Kallen, W.L.J.: Infinitesimally central extensions of Chevalley groups. Lecture Notes in Mathematics, vol. 356. Springer, Berlin (1973)

  32. Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction. Courant Lecture Notes in Mathematics, New York University, Courant Institute of Mathematical Sciences, vol. 11. American Mathematical Society, Providence (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Ladra.

Additional information

The authors were supported by the Ministerio de Economía y Competitividad (Spain), Grants MTM2013-43687-P and MTM2016-79661-P (European FEDER support included) and by Xunta de Galicia, Grant GRC2013-045 (European FEDER support included). X. García-Martínez was also supported by FPU scholarship, Ministerio de Educación, Cultura y Deporte (Spain) and a Fundación Barrié scholarship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Martínez, X., Ladra, M. Universal Central Extensions of Leibniz Superalgebras Over Superdialgebras. Mediterr. J. Math. 14, 73 (2017). https://doi.org/10.1007/s00009-017-0842-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-017-0842-9

Mathematics Subject Classification

Keywords

Navigation