Skip to main content
Log in

On Perturbed Fractional Differential Inclusions with Nonlocal Multi-point Erdélyi–Kober Fractional Integral Boundary Conditions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, by using a nonlinear alternative for a sum of compact upper semicontinuous and contractive multivalued operators, we establish sufficient conditions for the existence of solutions for perturbed fractional differential inclusions with nonlocal multi-point Erdélyi–Kober fractional integral boundary conditions. For the applicability of the main result, we include an example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives. Theory and Applications. Gordon and Breach Science Publishers, Yverdon (1993)

    MATH  Google Scholar 

  2. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V, Amsterdam (2006)

    Google Scholar 

  3. Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.): Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  4. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus Models and Numerical Methods. Series on Complexity, Nonlinearity and Chaos. World Scientific, Boston (2012)

    Book  MATH  Google Scholar 

  5. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific Publishing Co. Pte. Ltd., Hackensack (2014)

    Book  MATH  Google Scholar 

  6. Kisielewicz, M.: Stochastic Differential Inclusions and Applications. Springer Optimization and Its Applications, vol. 80. Springer, New York (2013)

    Book  MATH  Google Scholar 

  7. Wang, J.R., Zhou, Y., Feckan, M.: On recent developments in the theory of boundary value problems for impulsive fractional differential equations. Comput. Math. Appl. 64, 3008–3020 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: New results for boundary value problems of Hadamard-type fractional differential inclusions and integral boundary conditions. Bound. Value Probl. 2013, 275 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Liu, X., Liu, Z., Fu, X.: Relaxation in nonconvex optimal control problems described by fractional differential equations. J. Math. Anal. Appl. 409, 446–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ahmad, B., Ntouyas, S.K., Alsaedi, A.: Existence theorems for nonlocal multivalued Hadamard fractional integro-differential boundary value problems. J. Inequal. Appl. 2014, 454 (2014)

    Article  MathSciNet  Google Scholar 

  11. Henderson, J., Kosmatov, N.: Eigenvalue comparison for fractional boundary value problems with the Caputo derivative. Fract. Calc. Appl. Anal. 17, 872–880 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Balochian, S., Nazari, M.: Stability of particular class of fractional differential inclusion systems with input delay. Control Intell. Syst. 42(4), 279–283 (2014)

    MathSciNet  Google Scholar 

  13. Ahmad, B., Ntouyas, S.K.: Nonlocal fractional boundary value problems with slit-strips boundary conditions. Fract. Calc. Appl. Anal. 18, 261–280 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ding, Y., Wei, Z., Xu, J., O’Regan, D.: Extremal solutions for nonlinear fractional boundary value problems with \(p\)-Laplacian. J. Comput. Appl. Math. 288, 151–158 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, L., Ahmad, B., Wang, G.: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half line. Bull. Aust. Math. Soc. 91, 116–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Peng, L., Zhou, Y.: Bifurcation from interval and positive solutions of the three-point boundary value problem for fractional differential equations. Appl. Math. Comput. 257, 458–466 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Agarwal, R.P., Baleanu, D., Hedayati, V., Rezapour, S.: Two fractional derivative inclusion problems via integral boundary condition. Appl. Math. Comput. 257, 205–212 (2015)

    MathSciNet  MATH  Google Scholar 

  18. Wang, X., Schiavone, P.: Harmonic three-phase circular inclusions in finite elasticity. Contin. Mech. Thermodyn. 27(4–5), 739–747 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Sun, J., Yin, Q.: Robust fault-tolerant full-order and reduced-order observer synchronization for differential inclusion chaotic systems with unknown disturbances and parameters. J. Vib. Control 21(11), 2134–2148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ntouyas, S.K., Etemad, S., Tariboon, J.: Existence results for multi-term fractional differential inclusions. Adv. Differ. Equ. 2015, 140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahmad, B., Ntouyas, S.K.: Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions. Appl. Math. Comput. 266, 615–622 (2015)

    MathSciNet  Google Scholar 

  22. Yukunthorn, W., Ahmad, B., Ntouyas, S.K., Tariboon, J.: On Caputo–Hadamard type fractional impulsive hybrid systems with nonlinear fractional integral conditions. Nonlinear Anal. Hybrid Syst. 19, 77–92 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wu, Z.-B., Zou, Y.-Z., Huang, N.-J.: A class of global fractional-order projective dynamical systems involving set-valued perturbations. Appl. Math. Comput. 277, 23–33 (2016)

    MathSciNet  Google Scholar 

  24. Ahmad, B., Agarwal, R.P., Alsaedi, A.: Fractional differential equations and inclusions with semiperiodic and three-point boundary conditions. Bound. Value Probl. 2016, 28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Erdélyi, A., Kober, H.: Some remarks on Hankel transforms. Q. J. Math. Oxf. Second Ser. II 1, 212–221 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sneddon, I.N.: The use in mathematical analysis of Erdélyi–Kober operators and some of their applications. In: Fractional Calculus and Its Applications. Proceedings of the International Conference Held in New Haven. Lecture Notes in Math., vol. 457, pp. 37–79. Springer, New York (1975)

  27. Kalla, S.L., Kiryakova, V.S.: An \(H\)-function generalized fractional calculus based upon compositions of Erdélyi–Kober operators in \(L_p\). Math. Jpn. 35, 1–21 (1990)

    MATH  Google Scholar 

  28. Yakubovich, S.B., Luchko, Y.F.: The Hypergeometric Approach to Integral Transforms and Convolutions. Mathematics and Its Appl., vol. 287. Kluwer Acad. Publ., Dordrecht (1994)

    Book  MATH  Google Scholar 

  29. Kiryakova, V.: Generalized Fractional Calculus and Applications. Pitman Research Notes in Math., vol. 301. Longman, Harlow-Wiley, New York (1994)

  30. Kober, H.: On fractional integrals and derivatives. Q. J. Math. Oxf. Ser. ll 1, 193–211 (1940)

  31. Deimling, K.: Multivalued Differential Equations. Walter De Gruyter, Berlin (1992)

    Book  MATH  Google Scholar 

  32. Hu, S., Papageorgiou, N.S.: Handbook of Multivalued Analysis. Theory Mathematics and its Applications, vol. 419. Kluwer, Dordrecht (1997)

  33. Lasota, A., Opial, Z.: An application of the Kakutani-Ky Fan theorem in the theory of ordinary differential equations. Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13, 781–786 (1965)

    MathSciNet  MATH  Google Scholar 

  34. Petryshyn, W.V., Fitzpatric, P.M.: A degree theory, fixed point theorems, and mapping theorems for multivalued noncompact maps. Trans. Am. Math. Soc. 194, 1–25 (1974)

    Article  Google Scholar 

  35. Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions. Lecture Notes in Mathematics, vol. 580. Springer, Berlin (1977)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Ntouyas, S.K. On Perturbed Fractional Differential Inclusions with Nonlocal Multi-point Erdélyi–Kober Fractional Integral Boundary Conditions. Mediterr. J. Math. 14, 27 (2017). https://doi.org/10.1007/s00009-016-0830-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-016-0830-5

Mathematics Subject Classification

Keywords

Navigation