Skip to main content
Log in

Combined effects in some initial value problems involving Riemann–Liouville fractional derivatives in bounded domains

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the following semilinear fractional initial value problem

$$D^{\alpha }u(x)=a_{1}(x)u^{\sigma _{1}}(x)+a_{2}(x)u^{\sigma _{2}}, \quad x\in (0,1) \quad and \quad \lim_{x\longrightarrow 0^{+}}x^{1-\alpha }u(x)=0,$$

where \({0 < \alpha < 1}\), \({\sigma _{1},\sigma _{2} \in (-1,1)}\) and \({a_{1},a_{2}}\) are positive measurable functions on \({(0,1]}\) satisfying appropriate assumptions related to Karamata regular variation theory. We establish the existence and the uniqueness of a positive solution in the space of weighted continuous functions. We also give the boundary behavior of such solution, where appear the combined effects of singular and sublinear terms in the nonlinearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bliedtner J., Hansen W.: Potential Theory. An Analytic and Probabilistic Approach to Balayage. Springer, Berlin (1986)

    MATH  Google Scholar 

  2. Campos L.M.C.M.: On the solution of some simple fractional differential equations. Int. J. Math. Sci. 13, 481–496 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chemmam R., Mâagli H., Masmoudi S., Zribi M.: Combined effects in nonlinear singular elliptic problems in a bounded domain. Adv. Nonlinear Anal. 1, 301–318 (2012)

    MathSciNet  MATH  Google Scholar 

  4. Delbosco D., Rodino L.: Existence and uniqueness for a nonlinear fractional differential equation. J. Math. Anal. App. 204, 609–625 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Diethelm, K.; Freed, A.D.: On the solution of nonlinear fractional order differential equations used in the modeling of viscoplasticity. In: Keil, F., Mackens, W., Voss, H., Werther, J. (eds.) Scientific Computing in Chemical Engineering II-Computational Fluid Dynamics, Reaction Engineering and Molecular Properties, pp. 217–224. Springer, Heidelberg (1999)

  6. Furati K.M., Kassim M.D., Tatar N.: Existence and uniqueness for a problem with Hilfer fractional derivative. Comput. Math. Appl. 64, 1616–1626 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Furati K.M., Kassim M.D., Tatar N.: Non-existence of global solutions for a differential equation involving Hilfer fractional derivative, Electron. J. Differ. Equ. 2013(235), 1–10 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Hilfer R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  9. Hilfer R.: Experimental evidence for fractional time evolution in glass materials. Chem. Phys. 284, 399–408 (2002)

    Article  Google Scholar 

  10. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam (2006)

    MATH  Google Scholar 

  11. Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. J. Appl. Mech. 51(5), 299–307 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kou C, Zhou H, Yan Y: Existence of solutions of initial value problems for nonlinear fractional differential equations on the half-axis. Nonlinear Anal. 74, 5975–5986 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kumar P., Agarwal O.P.: An approximate method for numerical solution of fractional differential equations. Signal Process. 86, 2602–2610 (2006)

    Article  MATH  Google Scholar 

  14. Laskri Y., Tatar N.: The critical exponent for an ordinary fractional differential problem. Comput. Math. Appl. 59, 1266–1270 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ling Y., Ding S.: A class of analytic functions defined by fractional derivation. J. Math. Anal. Appl. 186, 504–513 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mâagli, H.; Chaieb, M.; Dhifli, A.; Zermani, S.: Existence and boundary behavior of positive solutions for a semilinear fractional differential equation. Mediterr. J. Math. (2015). doi:10.1007/s00009-015-0571-x

  17. Maric, V.: Regular Variation and Differential Equations, Lecture Notes in Mathematics, Vol. 1726. Springer, Berlin (2000)

  18. Metzler F., Schick W., Kilian H.G., Nonnenmacher T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  19. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  20. Pazy A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)

    Book  MATH  Google Scholar 

  21. Pitcher E., Sewell W.E.: Existence theorems for solutions of differential equations of non-integral order. Bull. Am. Math. Soc. 44(2), 100–107 (1938)

    Article  MathSciNet  MATH  Google Scholar 

  22. Podlubny I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Fract. Calc. Appl. Anal. 5, 367–386 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Seneta, R.: Regular Varying Functions, Lectures Notes in Mathematics, Vol. 508, Springer, Berlin (1976)

  24. Srivastava H.M., Saxena R.K.: Operators of fractional integration and their applications. Appl. Math. Comput. 118, 1–52 (2001)

    MathSciNet  MATH  Google Scholar 

  25. Zhang S.: The existence of a positive solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 252, 804–812 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang S.: Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives. Nonlinear. Anal. 71, 2087–2093 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malek Zribi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlouf, S.B., Chaieb, M. & Zribi, M. Combined effects in some initial value problems involving Riemann–Liouville fractional derivatives in bounded domains. Mediterr. J. Math. 13, 5135–5146 (2016). https://doi.org/10.1007/s00009-016-0797-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0797-2

Mathematics Subject Classification

Keywords

Navigation