Skip to main content
Log in

Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce a numerical method for solving time-fractional order telegraph equation. The method depends basically on an expansion of approximated solution in a series of Sinc function and shifted Legendre polynomials. The fractional derivative is expressed in the Caputo definition of fractional derivatives. The expansion coefficients are then determined by reducing the time-fractional order telegraph equation with its boundary and initial conditions to a system of algebraic equations for these coefficients. This system can be solved numerically using the Newton’s iteration method. Several numerical examples are introduced to demonstrate the reliability and effectiveness of the introduced method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Babolian E., Eftekhari A., Saadatmandi A.: A Sinc-Galerkin technique for the numerical solution of a class of singular boundary value problems. Comput. Appl. Math. 34, 45–63 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bhrawy, A.H., Al-Shomrani, M.M.: A shifted Legendre spectral method for fractional-order multi-point boundary value problems. Adv. Differ. Equ. 2012 (2012) (article 8)

  3. Biazar J., Ebrahimi H., Ayati Z.: An approximation to the solution of telegraph equation by variational iteration method. Numer. Methods Partial Differ. Equ. 25(4), 779–801 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Cascaval R.C., Eckstein E.C., Frota L., Goldstein J.A.: Fractional telegraph equations. J. Math. Anal. Appl. 276, 145–159 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen J., Liu F., Anh V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dalir M., Bashour M.: Applications of fractional calculus. Appl. Math. Sci. 4, 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Debnath L.: Nonlinear Partial Differential Equations for Scientists and Engineers. Birkhäuser, Boston (1997)

    Book  MATH  Google Scholar 

  8. Dehghan M., Lakestani M.: The use of Chebyshev cardinal functions for solution of the second-order one-dimensional telegraph equation. Numer. Methods Partial Differ. Equ. 25, 931–7938 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Das S., Vishal K., Gupta P.K., Yildirim A.: An approximate analytical solution of time-fractional telegraph equation. Appl. Math. Comput. 217(18), 7405–7411 (2011)

    MathSciNet  MATH  Google Scholar 

  10. Del-Castillo-Negrete D., Carreras B.A., Lynch V.E.: Front dynamics in reaction–diffusion systems with LTvy flights: a fractional diffusion approach. Phys. Rev. Lett. 91(1), 18301–18304 (2003)

    Article  Google Scholar 

  11. Garg M., Sharmah A.: Solution of space-time fractional telegraph equation by adomian decomposition method. J. Inequal. Special Funct. 2(1), 1–7 (2011)

    MathSciNet  Google Scholar 

  12. Gorenflo R., Mainardi F., Moretti D., Pagnini G., Paradisi P.: Discrete random walk models for space-time fractional diffusion. Chem. Phys. 284, 521–541 (2002)

    Article  MATH  Google Scholar 

  13. Hayat U., Mohyud-Din S.T.: Homotopy perturbation technique for time-fractional telegraph equations. Int. J. Mod. Theor. Phys. 2(1), 33–41 (2013)

    Google Scholar 

  14. Heydari M.H., Hooshmandasl M.R., Mohammadi F.: Two-dimensional Legendre wavelets for solving time-fractional telegraph equation. Adv. Appl. Math. Mech. 6(2), 247–260 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hosseini V.R., Chen W., Avazzadeh Z.: Numerical solution of fractional telegraph equation by using radial basis functions. Eng. Anal. Bound. Elem. 38, 31–39 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kaya D.: A new approach to the telegraph equation: An application of the decomposition method. Bull. Inst. Math. Acad. Sin. 28(1), 51–57 (2000)

    MathSciNet  MATH  Google Scholar 

  17. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  18. Lund J., Bowers K.L.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  19. Mainardi F., Paradisi P.: Fractional diffusive waves. J. Comput. Acoust. 9(4), 1417–1436 (2001)

    Article  MathSciNet  Google Scholar 

  20. Mao, Z., Xiao, A., Yu, Z., Shi, L.: Sinc-Chebyshev collocation method for a class of fractional diffusion-wave equations. Sci. World J. 2014 (article ID 143983)(2014)

  21. Miller K. S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  22. Nagy A.M., Sweilam N.H.: An efficient method for solving fractional HodgkinHuxley model. Phys. Lett. A. 378, 1980–1984 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  24. Roussy G., Pearcy J.A.: Foundations and Industrial Applications of Microwaves and Radio Frequency Fields. Wiley, New York (1995)

    Google Scholar 

  25. Saadatmandi A., Dehghan M., Azizi M.R.: The Sinc-Legendre collocation method for a class of fractional convection–diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sokolov I.M., Klafter J., Blumen A.: Ballistic versus diffusive pair-dispersion in the Richardson regime. Phys. Rev. E. 61(3), 2717–2722 (2000)

    Article  Google Scholar 

  27. Stenger, F.: Handbook of Sinc Numerical Methods. Chapman & Hall/CRC Numerical Analysis and Scientific Computing, CRC Press, Boca Raton (2011)

  28. Sweilam N.H., Nagy A.M.: Numerical solution of fractional wave equation using Crank–Nicholson method. World Appl. Sci. J. (WASJ) 13, 71–75 (2011)

    Google Scholar 

  29. Sweilam N.H., Nagy A.M., El-Sayed A.A.: Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation. Chaos Solitons Fractals 73, 141–147 (2015)

    Article  MathSciNet  Google Scholar 

  30. Sweilam N.H., Nagy A.M., El-Sayed A.A.: On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind. J. King Saud Univ. Sci. 28(1), 41–47 (2016)

    Article  Google Scholar 

  31. Szabo T.L., Wu J.: A model for longitudinal and shear wave propagation in viscoelastic media. J. Acoust. Soc. Am. 107(5), 2437–2446 (2000)

    Article  Google Scholar 

  32. Yildirim A.: He’s homotopy perturbation method for solving the space- and time-fractional telegraph equations. Int. J. Comput. Math. 87, 2998–3006 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Nagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sweilam, N.H., Nagy, A.M. & El-Sayed, A.A. Solving Time-Fractional Order Telegraph Equation Via Sinc–Legendre Collocation Method. Mediterr. J. Math. 13, 5119–5133 (2016). https://doi.org/10.1007/s00009-016-0796-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0796-3

Mathematics Subject Classification

Keywords

Navigation