Skip to main content
Log in

Banach–Stone Theorem for Quaternion- Valued Continuous Function Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We prove a Banach–Stone type theorem for surjective linear isometries of quaternion-valued continuous function spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araujo J., Font J.J.: Linear isometries between subspaces of continuous fuctions. Trans. Am. Math. Soc. 349, 413–428 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Halees H., Fleming R.J.: Extreme point methods and Banach-Stone theorem. J. Aust. Math. Soc. 75, 125–143 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Behrends, E.: M-structures and the Banach-Stone theorem, Lect. Notes in Math. vol. 736. Springer (1979)

  4. Botelho F., Fleming R.J., Jamison J.: Extreme points and isometries on vector-valued Lipschitz spaces. J. Math. Anal. Appl. 381, 821–832 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cambern M.: A Holszynski theorem for spaces of continuous vector-valued functions. Stud. Math. 63, 213–217 (1978)

    MathSciNet  MATH  Google Scholar 

  6. Dunford N., Schwarz J.: Linear operators, vol. 1, General Theory. Interscience, New York (1958)

    Google Scholar 

  7. Ebbinghaus, H.D.: Numbers, GTM, vol 123. Springer (1990)

  8. Engelking, H.D.: Theory of Dimensions, Finite and Infinite, Sigma Ser. in Pure Math., vol. 10. Helderman Verlag (1995)

  9. Fleming, H.D., Jamison, H.D.: Isometries on Banach spaces, vol. 1, Function Spaces. Monographs and Surveys in Pure and Applied Math., vol. 129. Chapman & Hall/CRC, Boca Raton (2003)

  10. Fleming, R., Jamison, R.: Isometries on Banach spaces vol. 2, Vector-valued function spaces. Monographs and Surveys in Pure and Applied Math., vol. 138. Chapman & Hall/CRC, Boca Raton (2008)

  11. Garrido M.I., Jaramillo M.I.: Variations on the Banach Stone theorem. Extracta Mathematicae 17, 351–383 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Holszynski W.: Continuous mappings induced by isometries of spaces of continuous functions. Stud. Math. 26, 133–136 (1966)

    Google Scholar 

  13. Jarosz K., Pathak V.D.: Isometries between function spaces. Trans. Am. Math. Soc. 305, 193–206 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jarosz, K., Pathak, V.D.: Isometries and small bound isomorphisms of function spaces, in Function Spaces, Edwardsville Il 1990, Lecture Notes in Pure Appl. Math., vol. 136, pp. 241–271. Marcel-Dekker (1992)

  15. Jarosz K.: Function representation of a noncommutative uniform algebra. Proc. Am. Math. Soc. 136, 605–611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kadison R.: Isometries of operator algebras. Ann. Math. 54, 325–338 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kawamura K.: Linear surjective isometries between vector-valued function spaces. J. Aust. Math. Soc. 100, 349–373 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kawamura, K., Miura T.: Real-linear surjective isometries between function spaces (preprint)

  19. Koshimizu H., Miura T., Takagi H., Takahasi S.-E.: Real-linear isometries between subspaces of continuous functions. J. Math. Anal. Appl. 413, 229–241 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lau K.-S.: A representation theorem for isometris of C(X,E). Pac. J. Math. 60, 229–233 (1975)

    Article  MATH  Google Scholar 

  21. Megginson, R.: An introduction to Banach space theory, GTM, vol. 183. Springer (1998)

  22. Miura T.: Surjective isometries between function spaces. Contemp. Math. 645, 231–239 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Novinger W.: Linear isometries of subspaces of spaces of continuous functions. Stud. Math. 53, 273–276 (1975)

    MathSciNet  MATH  Google Scholar 

  24. Rudin, W.: Real and Complex Analysis,3rd edn. McGraw-Hill (1986)

  25. Spanier, E.H.: Algebraic topology. McGraw-Hill (1966)

  26. Väisälä J.: A proof of the Mazur–Ulam theorem. Am. Math. Mon. 110(7), 633–635 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuhiro Kawamura.

Additional information

The author is supported by JSPS KAKENHI Grant Number 26400080.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kawamura, K. Banach–Stone Theorem for Quaternion- Valued Continuous Function Spaces. Mediterr. J. Math. 13, 4745–4761 (2016). https://doi.org/10.1007/s00009-016-0773-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0773-x

Mathematics Subject Classification

Keywords

Navigation