Skip to main content
Log in

Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the invariant metrizability and projective metrizability problems for the special case of the geodesic spray associated to the canonical connection of a Lie group. We prove that such canonical spray is projectively Finsler metrizable if and only if it is Riemann metrizable. This result means that this structure is rigid in the sense that considering left invariant metrics, the potentially much larger class of projective Finsler metrizable canonical sprays, corresponding to Lie groups, coincides with the class of Riemann metrizable canonical sprays. Generalisation of these results for geodesic orbit spaces are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations. Mem. Am. Math. Soc. 98(473), 110 (1992)

  2. Arnold V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications á l’hydrodynamique des fluides parfaites. Ann. Inst. Fourier 16, 319–361 (1960)

    Article  Google Scholar 

  3. Bryant R.L., Dunajski M., Eastwood M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83(3), 465–500 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability for sprays: parameterization-rigidity of the geodesics. Int. J. Math. 23(9), 1250099 (2012)

  5. Bucataru I., Muzsnay Z.: Metrizable isotropic second-order differential equations and Hilbert’s fourth problem. J. Aust. Math. Soc. 97(01), 27–47 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chern, S.S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Not. AMS. 43, 959–63 (1996)

  7. Crampin M., Mestdag T.: The inverse problem for invariant Lagrangians on a Lie group. J. Lie Theory 18(2), 471–502 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Crampin M., Mestdag T., Saunders D.J.: Hilbert forms for a Finsler metrizable projective class of sprays. Diff. Geom. Appl. 31(1), 63–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A Math. Gen. 37, 8245–8253 (2004)

  10. Ghanam, R., Hindeleh, F., Thompson, G.: Bi-invariant and noninvariant metrics on Lie groups. J. Math Phys. 48(10), 102903 (2007)

  11. Ghanam, R., Thompson, G., Miller, EJ.: Variationality of four-dimensional Lie group connections. J. Lie Theory. 14, 395–425 (2004)

  12. Grifone, J., Muzsnay, Z.: Variational principles for second-order differential equations. World Scientific, Singapore (2000)

  13. Matveev V.S.: Geodesically equivalent metrics in general relativity. J. Geom. Phys. 62, 675–691 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Mestdag, T.: Relative equilibra of invariant Lagrangian systems on a Lie Group. Geometric methods in mechanics and field theory, pp. 91–114. Academia Press, Gent (2007)

  15. Muzsnay, Z.: The Euler–Lagrange PDE and Finsler metrizability. Houst. J. Math. 32(1), 79–98 (2006)

  16. Muzsnay, Z.: An invariant variational principle for canonical flows on Lie groups. J. Math. Phys. 46(11), 112902 (2005)

  17. Muzsnay Z., Nagy P.T.: Invariant Shen connections and geodesic orbit spaces. Period. Math. Hung. 51(1), 37–51 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Muzsnay, Z., Thompson, G.: Inverse problem of the calculus of variations on Lie groups. Diff. Geom. Appl. 23(3), 257–281 (2005)

  19. Rapcsák A.: Über die bahntreuen Abbildungen metrischer Räume. Publ. Math. Debrecen 8, 285–290 (1961)

    MathSciNet  MATH  Google Scholar 

  20. Szabó, Z.: Positive definite Berwald spaces. Tensor N. Ser. 35, 25–39 (1981)

  21. Szilasi J., Vattamány Sz.: On the Finsler-metrizabilities of spray manifolds. Period. Math. Hung. 44(1), 81–100 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Strugar I., Thompson G.: The inverse problem for the canonical Lie group connection in dimension five. Houst. J. Math. 35(2), 373–409 (2009)

    MathSciNet  MATH  Google Scholar 

  23. Thompson G.: Variational connections on Lie groups.J. Diff. Geom. Appl. 18, 255– (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioan Bucataru.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucataru, I., Milkovszki, T. & Muzsnay, Z. Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces. Mediterr. J. Math. 13, 4567–4580 (2016). https://doi.org/10.1007/s00009-016-0762-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0762-0

Mathematics Subject Classification

Keywords

Navigation