Abstract
In this paper, we study the invariant metrizability and projective metrizability problems for the special case of the geodesic spray associated to the canonical connection of a Lie group. We prove that such canonical spray is projectively Finsler metrizable if and only if it is Riemann metrizable. This result means that this structure is rigid in the sense that considering left invariant metrics, the potentially much larger class of projective Finsler metrizable canonical sprays, corresponding to Lie groups, coincides with the class of Riemann metrizable canonical sprays. Generalisation of these results for geodesic orbit spaces are given.
Similar content being viewed by others
References
Anderson, I., Thompson, G.: The inverse problem of the calculus of variations for ordinary differential equations. Mem. Am. Math. Soc. 98(473), 110 (1992)
Arnold V.I.: Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications á l’hydrodynamique des fluides parfaites. Ann. Inst. Fourier 16, 319–361 (1960)
Bryant R.L., Dunajski M., Eastwood M.: Metrisability of two-dimensional projective structures. J. Differ. Geom. 83(3), 465–500 (2009)
Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability for sprays: parameterization-rigidity of the geodesics. Int. J. Math. 23(9), 1250099 (2012)
Bucataru I., Muzsnay Z.: Metrizable isotropic second-order differential equations and Hilbert’s fourth problem. J. Aust. Math. Soc. 97(01), 27–47 (2014)
Chern, S.S.: Finsler geometry is just Riemannian geometry without the quadratic restriction. Not. AMS. 43, 959–63 (1996)
Crampin M., Mestdag T.: The inverse problem for invariant Lagrangians on a Lie group. J. Lie Theory 18(2), 471–502 (2008)
Crampin M., Mestdag T., Saunders D.J.: Hilbert forms for a Finsler metrizable projective class of sprays. Diff. Geom. Appl. 31(1), 63–79 (2013)
Deng, S., Hou, Z.: Invariant Finsler metrics on homogeneous manifolds. J. Phys. A Math. Gen. 37, 8245–8253 (2004)
Ghanam, R., Hindeleh, F., Thompson, G.: Bi-invariant and noninvariant metrics on Lie groups. J. Math Phys. 48(10), 102903 (2007)
Ghanam, R., Thompson, G., Miller, EJ.: Variationality of four-dimensional Lie group connections. J. Lie Theory. 14, 395–425 (2004)
Grifone, J., Muzsnay, Z.: Variational principles for second-order differential equations. World Scientific, Singapore (2000)
Matveev V.S.: Geodesically equivalent metrics in general relativity. J. Geom. Phys. 62, 675–691 (2012)
Mestdag, T.: Relative equilibra of invariant Lagrangian systems on a Lie Group. Geometric methods in mechanics and field theory, pp. 91–114. Academia Press, Gent (2007)
Muzsnay, Z.: The Euler–Lagrange PDE and Finsler metrizability. Houst. J. Math. 32(1), 79–98 (2006)
Muzsnay, Z.: An invariant variational principle for canonical flows on Lie groups. J. Math. Phys. 46(11), 112902 (2005)
Muzsnay Z., Nagy P.T.: Invariant Shen connections and geodesic orbit spaces. Period. Math. Hung. 51(1), 37–51 (2005)
Muzsnay, Z., Thompson, G.: Inverse problem of the calculus of variations on Lie groups. Diff. Geom. Appl. 23(3), 257–281 (2005)
Rapcsák A.: Über die bahntreuen Abbildungen metrischer Räume. Publ. Math. Debrecen 8, 285–290 (1961)
Szabó, Z.: Positive definite Berwald spaces. Tensor N. Ser. 35, 25–39 (1981)
Szilasi J., Vattamány Sz.: On the Finsler-metrizabilities of spray manifolds. Period. Math. Hung. 44(1), 81–100 (2002)
Strugar I., Thompson G.: The inverse problem for the canonical Lie group connection in dimension five. Houst. J. Math. 35(2), 373–409 (2009)
Thompson G.: Variational connections on Lie groups.J. Diff. Geom. Appl. 18, 255– (2003)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bucataru, I., Milkovszki, T. & Muzsnay, Z. Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces. Mediterr. J. Math. 13, 4567–4580 (2016). https://doi.org/10.1007/s00009-016-0762-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00009-016-0762-0