Mediterranean Journal of Mathematics

, Volume 13, Issue 6, pp 3863–3886 | Cite as

Towers and Fibered Products of Model Structures

Open Access
Article

Abstract

Given a left Quillen presheaf of localized model structures, we study the homotopy limit model structure on the associated category of sections. We focus specifically on towers and fibered products (pullbacks) of model categories. As applications we consider Postnikov towers of model categories, chromatic towers of spectra and Bousfield arithmetic squares of spectra. For stable model categories, we show that the homotopy fiber of a stable left Bousfield localization is a stable right Bousfield localization.

Keywords

Localization model category Postnikov tower homotopy fibered product homotopy pullback 

Mathematics Subject Classification

55P42 55P60 55S45 

References

  1. 1.
    Adámek, J., Rosický, J.: Locally Presentable and Accessible Categories, London Mathematical Society Lecture Note Series, vol. 189. Cambridge University Press, Cambridge (1994)Google Scholar
  2. 2.
    Barnes D., Roitzheim C.: Stable left and right Bousfield localisations. Glasg. Math. J. 56(1), 13–42 (2014)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Barnes D., Roitzheim C.: Homological localisation of model categories. Appl. Categ. Struct. 23(3), 487–505 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Barwick C.: On left and right model categories and left and right Bousfield localizations. Homol. Homotopy Appl. 12(2), 245–320 (2010)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Beke T.: Sheafifiable homotopy model categories. Math. Proc. Camb. Philos. Soc. 129(3), 447–475 (2000)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bergner J: Homotopy fiber products of homotopy theories. Isr. J. Math. 185, 389–411 (2011)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Bergner J.: Homotopy limits of model categories and more general homotopy theories. Bull. Lond. Math. Soc. 44(2), 311–322 (2013)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Biedermann G., Chorny B., Röndigs O.: Calculus of functors and model categories. Adv. Math. 214, 92–115 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bousfield A.K.: The localization of spectra with respect to homology. Topology 18(4), 257–281 (1979)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bousfield A.K.: On the telescopic homotopy theory of spaces. Trans. Am. Math. Soc. 353(6), 2391–2426 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dugger D.: Combinatorial model categories have presentations. Adv. Math. 164, 177–201 (2001)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dugger D: Spectral enrichments of model categories. Homol. Homotopy Appl. 8(1), 1–30 (2006)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Dwyer, W.G.: Localizations, Axiomatic, Enriched and Motivic Homotopy Theory, 3–28, NATO Science Series II: Mathematics, Physics and Chemistry, vol. 131. Kluwer Academic Publications, Dordrecht (2004)Google Scholar
  14. 14.
    Gabriel, P., Ulmer, F.: Lokal präsentierbare Kategorien. Lecture Notes in Mathematics, vol. 221. Springer, Berlin (1971)Google Scholar
  15. 15.
    Goerss, P.G., Jardine, J.F.: Simplicial Homotopy Theory. Progress in Mathematics, vol. 174. Birkhäuser, Basel (1999)Google Scholar
  16. 16.
    Greenlees J.P.C., Shipley B.: Homotopy theory of modules over diagrams of rings. Proc. Am. Math. Soc. Ser. B 1, 89–104 (2014)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Gutiérrez J.J.: Cellularization of structures in stable homotopy categories. Math. Proc. Camb. Philos. Soc. 153, 399–418 (2012)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Gutiérrez, J.J., Roitzheim, C.: Bousfield Localisations Along Quillen Bifunctors (2014) arXiv:1411.0500
  19. 19.
    Hirschhorn, P.S.: Model Categories and Their Localizations. Mathematical Surveys and Monographs, vol. 99. American Mathematical Society, Providence (2003)Google Scholar
  20. 20.
    Hovey, M.: Model Categories. Mathematical Surveys and Monographs, vol. 63. American Mathematical Society, Providence (1999)Google Scholar
  21. 21.
    Hovey M., Shipley B., Smith J.H.: Symmetric spectra. J. Am. Math. Soc. 13(1), 149–208 (2000)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Lenhardt F.: Stable frames in model categories. J. Pure Appl. Algebra 216(5), 1080–1091 (2012)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Lurie, J.: Higher Topos Theory. Annals of Mathematical Studies, vol. 170. Princeton University Press, Princeton (2009)Google Scholar
  24. 24.
    Makkai, M., Paré, R.: Accessible Categories: The Foundations of Categorical Model Theory. Contemporary Mathematics, vol. 104. American Mathematical Society, Providence (1989)Google Scholar
  25. 25.
    Ravenel D.C.: Localization with respect to certain periodic homology theories. Am. J. Math. 106(2), 351–414 (1984)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ravenel, D.C.: Nilpotence and Periodicity in Stable Homotopy Theory. Annals of Mathematical Studies, vol. 128. Princeton University Press, Princeton (1992)Google Scholar
  27. 27.
    Toën B.: Derived Hall algebras. Duke Math. J. 135(3), 587–615 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute for Mathematics, Astrophysics and Particle PhysicsRadboud Universiteit NijmegenNijmegenNetherlands
  2. 2.School of Mathematics, Statistics and Actuarial ScienceUniversity of KentCanterbury, KentUK

Personalised recommendations