Skip to main content
Log in

Relative Asymptotics of Matrix Orthogonal Polynomials for Uvarov Perturbations: The Degenerate Case

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \({\alpha}\) be a square matrix of measures, and \({\left\{P_n(x; \alpha)\right\}_{n\geq 0}}\) the associated sequence of orthonormal matrix polynomials satisfying the three-term recurrence relation \({x P_n(x; \alpha) = A_{n+1}(\alpha)P_{n+1}(x; \alpha) + B_n(\alpha) P_n(x; \alpha) + A_n^{\ast}(\alpha)P_{n-1}(x; \alpha),}\) \({n \geq 0.}\) Let \({{\rm d}\beta(u) {\overset{ {\rm def} }{=}} {\rm d}\alpha(u) + M\delta(u - c)}\), where \({M}\) is a positive definite matrix, \({\delta (u - c)}\) is the Dirac measure supported at \({c}\) that is located outside the support of \({{\rm d}\alpha}\). We study the outer relative asymptotics of the sequence \({\left\{P_n(x; \beta)\right\}_{n\geq 0}}\) with respect to the sequence \({\left\{P_n(x; \alpha)\right\}_{n\geq 0}}\) under quite general assumption on the coefficients of the three-term recurrence relation \({\left\{A_{n}(\alpha) \right\}_{n\geq 0}}\) and \({\left\{B_{n}(\alpha) \right\}_{n\geq 0}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Nodarse R., Durán A.J., de los Ríos A.M.: Orthogonal matrix polynomials satisfying second order difference equations. J. Approx. Theory 169, 40–55 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aptekarev A.I., Nikishin E.M.: The scattering problem for a discrete Sturm–Liouville operator. Mat. USSR Sb. 49, 325–355 (1984)

    Article  MATH  Google Scholar 

  3. Damanik D., Pushnitski A., Simon B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1–85 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Delgado A.M., Geronimo J.S., Iliev P., Marcellán F.: Two variable orthogonal polynomials and structured matrices. SIAM J. Matrix Anal. Appl. 28(1), 118–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Delvaux S., Dette H.: Zeros and ratio asymptotics for matrix orthogonal polynomials. J. Anal. Math. 118(2), 657–690 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dette H., Studden W.J.: Quadrature formulas for matrix measures-a geometric approach. Linear Algebra Appl. 364, 33–64 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Durán A.J.: Markov ́s theorem for orthogonal matrix polynomials. Can. J. Math. 48, 1180–1195 (1996)

    Article  MATH  Google Scholar 

  8. Durán A.J.: Ratio asymptotic for orthogonal matrix polynomials. J. Approx. Theory 100, 304–344 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Durán A.J.: A method to find weight matrices having symmetric second-order differential operators with matrix leading coefficient. Constr. Approx. 29(2), 181–205 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Durán A.J., Daneri-Vias E.: Ratio asymptotic for orthogonal matrix polynomials with unbounded recurrence coefficients. J. Approx. Theory 110, 1–17 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Durán, A.J., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 2004(10), 461–484 (2004)

  12. Durán, A.J., Grünbaum, F.A.: A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 2005(23), 1371–1390 (2005)

  13. Durán A.J., Grünbaum F.A.: Structural formulas for orthogonal matrix polynomials satisfying second-order differential equations. I. Constr. Approx. 22(2), 255–271 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Durán F.A., Grünbaum F.A.: A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178(1-2), 169–190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Durán A.J., Ismail M.E.H.: Differential coefficients of orthogonal matrix polynomials. J. Comput. Appl. Math. 190(1–2), 424–436 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Durán, A.J., de la Iglesia, M.D.: Second-order differential operators having several families of orthogonal matrix polynomials as eigenfunctions. Int. Math. Res. Not. IMRN (2008). (Art. ID rnn 084, 24 pp.)

  17. Durán A.J., López-Rodríguez P.: Orthogonal matrix polynomials: zeros and Blumenthaĺs theorem. J. Approx. Theory 84, 96–118 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Durán A.J., Polo B.: Gaussian quadrature formulae for matrix weights. Linear Algebra Appl. 355, 119–146 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Durán A.J., de los Ríos A.M.: The convex cone of weight matrices associated to a second-order matrix difference operator. Integr. Transforms Spec. Funct. 25(8), 663–679 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Durán A.J., Sánchez-Canales V.: Rodrigues’ formulas for orthogonal matrix polynomials satisfying second-order difference equations. Integr. Transforms Spec. Funct. 25(11), 849–863 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Durán A.J., Van Assche W.: Orthogonal matrix polynomials and higher order recurrence relations. Linear Algebra Appl. 219, 261–280 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Geronimo J.S.: Scattering theory and the matrix orthogonal polynomials in the real line. Circuits Syst. Signal Process. 1, 471–495 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  23. Krein M.G.: Fundamental aspects of the representation theory of hermitian operators with deficiency index (m,m). Am. Math. Soc. Transl. 2(97), 75–143 (1970)

    MATH  Google Scholar 

  24. Marcellán F., Yakhlef H.O.: Recent trends on analytic properties of matrix orthonormal polynomials. Electr. Trans. Numer. Anal. 14, 110–123 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Masson D.R., Repka J.: Spectral theory of Jacobi matrices in \({l^2(\mathbb{Z})}\) and the \({su(1, 1)}\) Lie algebra. SIAM J. Math. Anal. 22, 1131–1146 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sinap A., Van Assche W.: Polynomial interpolation and Gaussian quadrature for matrix valued functions. Linear Algebra Appl. 207, 71–114 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Yakhlef H.O.: Relative asymptotics for orthogonal matrix polynomials with unbounded recurrence coefficients. Integral Transforms Spec. Funct. 18(1-2), 39–57 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Yakhlef, H.O., Marcellán, F.: Orthogonal matrix polynomials, connection between recurrences on the unit circle and on a finite interval. In: Lassonde, M. (ed.) Proceedings of the 5th International Conference on Approximation, Optimization and Mathematical Economics, pp. 373–386. Physica Verlag (2000)

  29. Yakhlef H.O., Marcellán F., Piñar M.: Perturbations in the Nevai matrix class of orthogonal matrix polynomials. Linear Algebra Appl. 336, 231–254 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yakhlef H.O., Marcellán F., Piñar M.: Relative asymptotics for orthogonal matrix polynomials with convergent recurrence coefficients. J. Approx. Theory 111, 1–30 (2001)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossain O. Yakhlef.

Additional information

The work of the second author (FM) has been partially supported by Dirección general de Investigación Cientf́acuteica y Técnica, Ministerio de Economía y Competitividad of Spain, grant MTM2012-36732-C03-01.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakhlef, H.O., Marcellán, F. Relative Asymptotics of Matrix Orthogonal Polynomials for Uvarov Perturbations: The Degenerate Case. Mediterr. J. Math. 13, 3135–3153 (2016). https://doi.org/10.1007/s00009-016-0676-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-016-0676-x

Mathematics Subject Classification

Keywords

Navigation