Skip to main content
Log in

On Singular Values Related to DAEs in Kronecker Canonical Form

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The index and the structural properties of differential algebraic equations (DAEs) are often determined by rank considerations of the derivative array. Since the Kronecker canonical form is a well-understood standard form that permits deep insight into the properties of DAEs, in this contribution we undertake an analysis of the singular values of this specific derivative array. To this end, the special structure of the obtained block matrices is pointed out, such that some formulas for the computation and estimation of eigenvalues and singular values can be applied. Actually, we explore the relationship between the spectra of particular block tridiagonal matrices and some perturbed Jacobi matrices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aşcı M., Taşcı D., El-Mikkawy M.: On determinants and permanents of k-tridiagonal matrices. Util. Math. 89, 97–106 (2012)

    MathSciNet  MATH  Google Scholar 

  2. Bergun, G.E., Hoggatt Jr., V.E.: A family of tridiagonal matrices. Fibonacci Q. 16, 285–288 (1978)

  3. Brenan, K.E., Campbell, S.L., Petzold L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, New York (1989)

  4. Civciv H.: A note on the determinant of five-diagonal matrices with Fibonacci numbers. Int. J. Contemp. Math. Sci. 3, 419–424 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Ergerváry E., Szász O.: Einige Extremalprobleme im Bereiche der trigonometrischen Polynome. Math. Z. 27, 641–652 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  6. Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated DAEs using automatic differentiation. Numer. Algorithms (2015). doi:10.1007/s11075-015-9973-x

  7. Estévez Schwarz, D., Lamour, R.: A new projector based decoupling of linear DAEs for monitoring singularities (2015) (submitted)

  8. Elouafi M.: An explicit formula for the determinant of a skew-symmetric pentadiagonal Toeplitz matrix. Appl. Math. Comput. 218, 3466–3469 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Elouafi M., Aiat Hadj A.D.: On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrix. Appl. Math. Comput. 198, 634–642 (2008)

    MathSciNet  MATH  Google Scholar 

  10. da Fonseca C.M.: On the eigenvalues of some tridiagonal matrices. J. Comput. Appl. Math. 200(1), 283–286 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. da Fonseca C.M., Yılmaz F.: Some comments on k-tridiagonal matrices: determinant, spectra, and inversion. Appl. Math. Comput. 270, 644–647 (2015)

    MathSciNet  Google Scholar 

  12. Gantmacher, F.R.: Teorija Matrits. Gosudarstv, Izdat. Techn.-Teor. Lit., Moskva (1954)

  13. Jiang, E.: Bounds for the smallest singular value of a Jordan block with an application to eigenvalue perturbation. Linear Algebra Appl. 197198, 691–707 (1994)

  14. Kılıc E.: On a constant-diagonals matrix. Appl. Math. Comput. 204, 184–190 (2008)

    MathSciNet  MATH  Google Scholar 

  15. Kılıc E., El-Mikkawy M.: A computational algorithm for special nth-order pentadiagonal Toeplitz determinants. Appl. Math. Comput. 199, 820–822 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Kunkel, P., Mehrmann, M.: Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zürich (2006)

  17. Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum 1. Springer, Berlin (2013)

  18. Losonczi L.: Eigenvalues and eigenvectors of some tridiagonal matrices. Acta Math. Hung. 60, 309–322 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  19. McMillen T.: On the eigenvalues of double band matrices. Linear Algebra Appl. 431, 1890–1897 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. McMillen T., Bourget A., Agnew A.: On the zeros of complex Van Vleck polynomials. J. Comput. Appl. Math. 223, 862–871 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Piazza G., Politi T.: An upper bound for the condition number of a matrix in spectral norm. J. Comput. Appl. Math. 143, 141–144 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Hackensack (2008)

  23. Sogobe T., El-Mikkawy M.: Fast block diagonalization of k-tridiagonal matrices. Appl. Math. Comput. 218, 2740–2743 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Weyl H.: Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. USA 35, 408–411 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wituła R., Słota D.: On computing the determinants and inverses of some special type of tridiagonal and constant-diagonals matrices. Appl. Math. Comput. 189, 514–527 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diana Estévez Schwarz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Estévez Schwarz, D., da Fonseca, C.M. On Singular Values Related to DAEs in Kronecker Canonical Form. Mediterr. J. Math. 13, 2813–2826 (2016). https://doi.org/10.1007/s00009-015-0657-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0657-5

Mathematics Subject Classification

Keywords

Navigation