Abstract
The index and the structural properties of differential algebraic equations (DAEs) are often determined by rank considerations of the derivative array. Since the Kronecker canonical form is a well-understood standard form that permits deep insight into the properties of DAEs, in this contribution we undertake an analysis of the singular values of this specific derivative array. To this end, the special structure of the obtained block matrices is pointed out, such that some formulas for the computation and estimation of eigenvalues and singular values can be applied. Actually, we explore the relationship between the spectra of particular block tridiagonal matrices and some perturbed Jacobi matrices.
Similar content being viewed by others
References
Aşcı M., Taşcı D., El-Mikkawy M.: On determinants and permanents of k-tridiagonal matrices. Util. Math. 89, 97–106 (2012)
Bergun, G.E., Hoggatt Jr., V.E.: A family of tridiagonal matrices. Fibonacci Q. 16, 285–288 (1978)
Brenan, K.E., Campbell, S.L., Petzold L.R.: Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations. North-Holland, New York (1989)
Civciv H.: A note on the determinant of five-diagonal matrices with Fibonacci numbers. Int. J. Contemp. Math. Sci. 3, 419–424 (2008)
Ergerváry E., Szász O.: Einige Extremalprobleme im Bereiche der trigonometrischen Polynome. Math. Z. 27, 641–652 (1928)
Estévez Schwarz, D., Lamour, R.: Diagnosis of singular points of properly stated DAEs using automatic differentiation. Numer. Algorithms (2015). doi:10.1007/s11075-015-9973-x
Estévez Schwarz, D., Lamour, R.: A new projector based decoupling of linear DAEs for monitoring singularities (2015) (submitted)
Elouafi M.: An explicit formula for the determinant of a skew-symmetric pentadiagonal Toeplitz matrix. Appl. Math. Comput. 218, 3466–3469 (2011)
Elouafi M., Aiat Hadj A.D.: On the characteristic polynomial, eigenvectors and determinant of a pentadiagonal matrix. Appl. Math. Comput. 198, 634–642 (2008)
da Fonseca C.M.: On the eigenvalues of some tridiagonal matrices. J. Comput. Appl. Math. 200(1), 283–286 (2007)
da Fonseca C.M., Yılmaz F.: Some comments on k-tridiagonal matrices: determinant, spectra, and inversion. Appl. Math. Comput. 270, 644–647 (2015)
Gantmacher, F.R.: Teorija Matrits. Gosudarstv, Izdat. Techn.-Teor. Lit., Moskva (1954)
Jiang, E.: Bounds for the smallest singular value of a Jordan block with an application to eigenvalue perturbation. Linear Algebra Appl. 197–198, 691–707 (1994)
Kılıc E.: On a constant-diagonals matrix. Appl. Math. Comput. 204, 184–190 (2008)
Kılıc E., El-Mikkawy M.: A computational algorithm for special nth-order pentadiagonal Toeplitz determinants. Appl. Math. Comput. 199, 820–822 (2008)
Kunkel, P., Mehrmann, M.: Differential-Algebraic Equations. Analysis and Numerical Solution. European Mathematical Society Publishing House, Zürich (2006)
Lamour, R., März, R., Tischendorf, C.: Differential-Algebraic Equations: A Projector Based Analysis. Differential-Algebraic Equations Forum 1. Springer, Berlin (2013)
Losonczi L.: Eigenvalues and eigenvectors of some tridiagonal matrices. Acta Math. Hung. 60, 309–322 (1992)
McMillen T.: On the eigenvalues of double band matrices. Linear Algebra Appl. 431, 1890–1897 (2009)
McMillen T., Bourget A., Agnew A.: On the zeros of complex Van Vleck polynomials. J. Comput. Appl. Math. 223, 862–871 (2009)
Piazza G., Politi T.: An upper bound for the condition number of a matrix in spectral norm. J. Comput. Appl. Math. 143, 141–144 (2002)
Riaza, R.: Differential-Algebraic Systems. Analytical Aspects and Circuit Applications. World Scientific, Hackensack (2008)
Sogobe T., El-Mikkawy M.: Fast block diagonalization of k-tridiagonal matrices. Appl. Math. Comput. 218, 2740–2743 (2011)
Weyl H.: Inequalities between the two kinds of eigenvalues of a linear transformation. Proc. Natl. Acad. Sci. USA 35, 408–411 (1949)
Wituła R., Słota D.: On computing the determinants and inverses of some special type of tridiagonal and constant-diagonals matrices. Appl. Math. Comput. 189, 514–527 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Estévez Schwarz, D., da Fonseca, C.M. On Singular Values Related to DAEs in Kronecker Canonical Form. Mediterr. J. Math. 13, 2813–2826 (2016). https://doi.org/10.1007/s00009-015-0657-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00009-015-0657-5