Skip to main content
Log in

A General Theorem on Inversion Problems for Polynomial Sets

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The inversion problem for a given polynomial set, \({\{P_n\}_{n\geq0}}\), expanded in a basis \({\{\mathfrak{B}_{n}\}}\) is the problem of finding the coefficients \({I_{k}(n)}\) in the expansion

$${\mathfrak{B}_n(x) } = \sum_{k=0}^{n}I_k(n) P_{k}(x).$$

In this paper, we state a theorem solving this problem for each family of polynomials defined only by its explicit representation. The obtained coefficients are expressed by means of a simple recurrence relation with two indexes. We illustrate the method by producing explicit formulas for some known polynomial sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luke Y.L.: The Special Functions and Their Approximations, vol. I. Academic Press, New York (1969)

  2. Tcheutia D.D., Foupouagnigni M., Koepf W., Njionou P.S.: Representations of q-orthogonal polynomials. J. Symb. Comput. 47, 1347–1371 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artés P.L., Dehesa J.S., Martínez-Finkelshtein A., Sánchez-Ruiz J.: Linearization and connection coefficients for hypergeometric-type polynomials. J. Comput. Appl. Math. 99, 15–26 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Area, I., Godoy, E., Rodal, J., Ronveaux, A., Zarzo, A.: Bivariate Krawtchouk polynomials: inversion and connection problems with NAVIMA algorithm. J. Comput. Appl. Math. (2014)

  5. Zarzo A., Area I., Godoy E., Ronveaux A.: Results for some inversion problems for classical continous and discrete orthogonal polynomials. J. Phys. A Math. Gen. 3(30), L35–L40 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Area I., Godoy E., Ronveaux A., Zarzo A.: Solving connection and linearization problems within the Askey scheme and its q-analogue via inversion formulas. J. Comput. Appl. Math. 133, 151–162 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ben Cheikh Y., Ben Romdhane N.: d-symmetric d-orthogonal polynomials of Brenke type. J. Math. Anal. Appl. 416, 735–747 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Njionou Sadjang P., Koepf W., Foupouagnigni M.: On moments of classical orthogonal polynomials. J. Math. Anal. Appl. 424, 122–151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ben Cheikh Y., Chaggara H.: Connection coefficients between Boas–Buck polynomial sets. J. Math. Anal. Appl. 319, 665–689 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Maroni P., Da Rocha Z.: Connection coefficients for orthogonal polynomials: symbolic computations, verifications and demonstration in the Mathematica language. Numer. Algorithms 63, 507–520 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Area I., Godoy E., Ronveaux A., Zarzo A.: Inversion problems in the q-Hahn tableau. J. Symb. Comput. 28, 767–776 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Koepf W., Schemrsau D., Ronveaux A., Zarzo A.: Representations of orthogonal polynomials. J. Comput. Appl. Math. 57, 57–94 (1999)

    MathSciNet  Google Scholar 

  13. Lesky, P.A., Koekoek, R., Swarrtow, R.F.: Hypergeometric orthogonal polynomials and their q-analogues. In: Springer Monographs in Mathematics (2010)

  14. Abramowitz, M., Stegun, I.: Handbook of Mathematical Functions. Dover Publications (1965)

  15. Chaunday T.X.: An extension of hypergeometric functions(I). Q. J. Math. Oxf. 14, 55–78 (1943)

    Article  MathSciNet  Google Scholar 

  16. Brychkov, Y.A., Prudnikov, A.P., Marichev, O.I.: Integrals and Series. Gordon and Breach, New York (1986)

  17. Suslov, S.K., Nikiforov, A.F., Uvarov, V.B.: Classical orthogonal polynomials of a discrete variable. In: Springer Series in Computational Physics. Springer, Berlin (1991)

  18. Nangho K.K., Foupouagnigni M., Koepf W., Mboutngam S.: On solutions of holonomic divided-difference equations on nonuniform lattices. Axioms 2, 404–434 (2013)

    Article  MATH  Google Scholar 

  19. Area, I., Godoy, E., Nieto, J.J.: Fixed point theory approach to boundary value problems for second-order difference equations on non-uniform lattices. Adv. Differ. Equ. 14 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neila Ben Romdhane.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romdhane, N.B. A General Theorem on Inversion Problems for Polynomial Sets. Mediterr. J. Math. 13, 2783–2793 (2016). https://doi.org/10.1007/s00009-015-0654-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0654-8

Mathematics Subject Classification

Keywords

Navigation