Skip to main content
Log in

Geometric Criterium in the Center Problem

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we use a geometric criterium based on the classical method of the construction of Lyapunov functions to determine if a differential system has a focus or a center at a singular point. This criterium is proved to be useful for several examples studied in previous works with other more specific methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Algaba A., Gamero E., García C.: The integrability problem for a class of planar systems. Nonlinearity 22(2), 395–420 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Algaba A., García C., Reyes M.: Characterization of a monodromic singular point of a planar vector field. Nonlinear Anal. 74, 5402–5414 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  3. Algaba A., García C., Reyes M.: Existence of an inverse integrating factor, center problem and integrability of a class of nilpotent systems. Chaos Solitons Fractals 45, 869–878 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Algaba A., Fuentes N., García C.: Centers of quasi-homogeneous polynomial planar systems. Nonlinear Anal. Real World Appl. 13, 419–431 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Álvarez M.J., Gasull A.: Monodromy and stability for nilpotent critical points. Int. J. Bifurc. Chaos Appl. Sci. Eng. 15(4), 1253–1265 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bautin N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Mat. Sb. N.S. 30(72), 181–196 (1952)

    MathSciNet  MATH  Google Scholar 

  7. Bautin N.N.: On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type. Am. Math. Soc. Transl. 100(1), 397–413 (1954)

    MathSciNet  Google Scholar 

  8. Bruno A.D.: Local Methods in Nonlinear Differential Equations. Springer, New York (1989)

    Book  Google Scholar 

  9. Écalle, J.: Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac. In: Actualités Mathématiques (Current Mathematical Topics). Hermann, Paris (1992)

  10. Gasull A., Llibre J., Mañosa V., Mañosas F.: The focus-centre problem for a type of degenerate system. Nonlinearity 13(3), 699– (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giné J.: Sufficient conditions for a center at a completely degenerate critical point. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12(7), 1659–1666 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. Giné J.: On the centers of planar analytic differential systems. Int. J. Bifurc. Chaos Appl. Sci. Eng. 17(9), 3061–3070 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Giné J., Llibre J.: On the center conditions for analytic monodromic degenerate singularities. J. Bifurc. Chaos Appl. Sci. Eng. 22(12), 1250303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Giné J., Llibre J.: A method for characterizing nilpotent centers. J. Math. Anal. Appl. 413, 537–545 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Giné J., Peralta-Salas D.: Existence of inverse integrating factors and Lie symmetries for degenerate planar centers. J. Differ. Equ. 252(1), 344–357 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hartman, P.: Ordinary differential equations. Wiley, New York (1964) (reprinted by SIAM, 2002)

  17. Il’yashenko Y.S.: Algebraic unsolvability and almost algebraic solvability of the problem for the center-focus. Funct. Anal. Appl. 6(3), 30–37 (1972)

    MathSciNet  Google Scholar 

  18. Il’yashenko, Y.S.: Finiteness Theorems for Limit Cycles. Translations of Mathematical Monographs, vol. 94. American Mathematical Society, Providence (1991). (Traslated from the Russian by H.H. McFaden)

  19. Li J.: Hilbert’s 16th problem and bifurcations of planar polynomial vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 13(1), 47–106 (2003)

    Article  MATH  Google Scholar 

  20. Liapunov, A.M.: Stability of Motion. With a Contribution by V. A. Pliss and An Introduction by V.P. Basov. Mathematics in Science and Engineering, vol. 30. Academic Press, New York (1966). (Translated from the Russian by Flavian Abramovici and Michael Shimshoni)

  21. Mañosa V.: On the center problem for degenerate singular points of planar vector fields. Int. J. Bifurc. Chaos Appl. Sci. Eng. 12(4), 687–707 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Mattei J.F., Moussu R.: Holonomie et intégrales premières. Ann. Sci. École Norm. Sup. 13(4), 469–523 (1980)

    MathSciNet  MATH  Google Scholar 

  23. Mazzi L., Sabatini M.: A characterization of centres via first integrals. J. Differ. Equ. 76(2), 222–237 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  24. Medvedeva, N.B.: The first focus quantity of a complex monodromic singularity, (Russian). Trudy Sem. Petrovsk. 13, 106–122, 257 (1988)

  25. Medvedeva NB: Translation in J. Soviet Math. 50(1), 1421–1436 (1990)

    Article  MathSciNet  Google Scholar 

  26. Moussu R.: Symetrie et forme normale des centres et foyers degeneres. Ergod. Theory Dyn. Syst. 2, 241–251 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Pearson J.M., Lloyd N.G., Christopher C.J.: Algorithmic derivation of centre conditions. SIAM Rev. 38(4), 619–636 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Poincaré H.: Mémoire sur les courbes définies par les équations différentielles. J. Math. 37, 375–422 (1881)

    MATH  Google Scholar 

  29. Poincaré H.: Mémoire sur les courbes définies par les équations différentielles. J. Math. 8, 251–296 (1882)

    MATH  Google Scholar 

  30. Poincaré, H.: Oeuvres de Henri Poincaré, vol. I, pp. 3–84. Gauthier-Villars, Paris (1951)

  31. Romanovski, V.G., Shafer, D.S.: The Center and Cyclicity Problems: A Computational Algebra Approach. Birkhäuser, Boston (2009)

  32. Teixeira M.A., Yang J.: The center-focus problem and reversibility. J. Differ. Equ. 174, 237–251 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  33. Varin V.P.: Poincaré map for some polynomial systems of differential equations. Math. Sb. 195(7), 3–20 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaume Giné.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Algaba, A., García, C. & Giné, J. Geometric Criterium in the Center Problem. Mediterr. J. Math. 13, 2593–2611 (2016). https://doi.org/10.1007/s00009-015-0641-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0641-0

Mathematics Subject Classification

Keywords

Navigation