Skip to main content
Log in

Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A spectral shifted Legendre Gauss–Lobatto collocation method is developed and analyzed to solve numerically one-dimensional two-sided space fractional Boussinesq (SFB) equation with non-classical boundary conditions. The method depends basically on the fact that an expansion in a series of shifted Legendre polynomials \({P_{L,n}(x), \ x\in[0,L]}\) is assumed, for the function and its space-fractional derivatives occurring in the two-sided SFB equation. The Legendre–Gauss–Lobatto quadrature rule is established to treat the non-local conservation conditions, and then the problem with its non-local conservation conditions is reduced to a system of ordinary differential equations (ODEs) in time. Thereby, the expansion coefficients are then determined by reducing the two-sided SFB with its boundary and initial conditions to a system of ODEs for these coefficients. This system may be solved numerically in a step-by-step manner by using implicit Runge–Kutta method of order four. Numerical results indicating the high accuracy and effectiveness of this algorithm are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, San Diego (2006)

  2. Wei L., He Y.: Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems. Appl. Math. Model. 38, 1511–1522 (2014)

    Article  MathSciNet  Google Scholar 

  3. Abbas I.A.: Eigen value approach to fractional orde rgeneralized magneto-ther- moelastic medium subjected to movingheat source. J. Magnet. Magnet. Mater. 377, 452–459 (2015)

    Article  Google Scholar 

  4. Yu J., Hu H., Zhou S., Lin X.: Generalized Mittag–Leffler stability of multi-variables fractional order nonlinear systems. Automatica 49, 1798–1803 (2013)

    Article  MathSciNet  Google Scholar 

  5. Hajji M.A., Al-Mdallal Q.M.: FM Allan An efficient algorithm for solving higher-order fractional Sturm–Liouville eigenvalue problems. J. Comput. Phys. 272, 550–558 (2014)

    Article  MathSciNet  Google Scholar 

  6. Zhao, X., Suna, Z., Karniadakis, G.E.: Second-order approximations for variable order fractional derivatives: algorithms and applications. J. Comput. Phys. (2015). http://dx.doi.org/10.1016/j.jcp.2014.08.015

  7. Kirchner J.W., Feng X., Neal C.: Fractal stream chemistry and its implications for containant transport in catchments. Nature 403, 524–526 (2000)

    Article  Google Scholar 

  8. Magin, R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, New York (2006)

  9. Podlubny, I.: Fractional differential equations. In: Mathematics in Science and Engineering. Academic Press Inc., San Diego (1999)

  10. Hilfer, R.: Applications of Fractional Calculus in Physics. Word Scientific, Singapore (2000)

  11. Ma J., Liu J., Zhou Z.: Convergence analysis of moving finite element methods for space fractional differential equations. J. Comput. Appl. Math. 255, 661–670 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jiang Y., Ma J.: High-order finite element methods for time-fractional partial differential equations. J. Comput. Appl. Math. 235(11), 3285–3290 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Liu Y., Fang Z., Li H., He S.: A mixed finite element method for a time-fractional fourth-order partial differential equation. Appl. Math. Comput. 243, 703–717 (2014)

    MathSciNet  MATH  Google Scholar 

  14. Chen S., Liu F.B. Burrage: K Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media. Comput. Math. Appl. 68, 2133–2141 (2014)

    Article  MathSciNet  Google Scholar 

  15. Vong S., Wang Z.: A high order compact finite difference scheme for time fractional Fokker-Planck equations. Appl. Math. Lett. 43, 3843 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Wang H., Du N.: Fast alternating-direction finite difference methods for three-dimensional space-fractional diffusion equations. J. Comput. Phys. 258, 305–318 (2014)

    Article  MathSciNet  Google Scholar 

  17. Bhrawy A.H., Zaky M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlin. Dyn. 80(1), 101–116 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Bhrawy A.H., Zaky M.A.: A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations. J. Comput. Phys. 281, 876–895 (2015)

    Article  MathSciNet  Google Scholar 

  19. Yang, Y., Huang, Y.: Spectral-collocation methods for fractional Pantograph delay-integrodifferential equations. Adv. Math. Phys. 2013, 14. Article ID 821327 (2013)

  20. Fu, Z.-J., Chen, W., Ling, L.: Method of approximate particular solutions for constant- and variable-order fractional diffusion models. Eng. Anal. Bound. Elem. (2014). http://doi.org/10.1016/j.enganabound.2014.09.003

  21. Bhrawy A.H., Al-Zahrani A.A., Alhamed Y.A., Baleanu D.: A new generalized Laguerre-Gauss collocation scheme for numerical solution of generalized fractional Pantograph equations. Romanian J. Phys. 59, 646–657 (2014)

    MATH  Google Scholar 

  22. Saadatmandi A., Dehghan M.: A tau approach for solution of the space fractional diffusion equation, Comput. Math. Appl. 62, 1135–1142 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Saadatmandi, A.: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Model. (2013). http://dx.doi.org/10.1016/j.apm.2013.08.007

  24. Yi M., Huang J.: Wavelet operational matrix method for solving fractional differential equations with variable coefficients. Appl. Math. Comput. 230, 383–394 (2014)

    MathSciNet  Google Scholar 

  25. Bhrawy, A.H., Zaky, M.A., Baleanu, D.: New numerical approximations for space-time fractional Burgers’ equations via a Legendre spectral-collocation method. Rom. Rep. Phys. 67(2), 340–349 (2015)

  26. Yin, F., Song, J., Wu, Y., Zhang, L.: Numerical solution of the fractional partial differential equations by the two-dimensional fractional-order Legendre functions. Abstract Appl. Anal. 2013, 13 (2013)

  27. Yin, F., Song, J., Leng, H., Lu, F.: Couple of the variational iteration method and fractional-order Legendre functions method for fractional differential equations. Sci. World J. 2014, 9 (2014)

  28. Bhrawy, A.H.: A highly accurate collocation algorithm for 1+1 and 2+1 fractional percolation equations. J. Vibr. Control. (2015). doi:10.1177/1077546315597815

  29. Doha E.H., Bhrawy A.H.: A Jacobi spectral Galerkin method for the integrated forms of fourth-order elliptic differential equations. Numer. Meth. Part. Differ. Equ. 25(3), 712–739 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Zayernouri, M.: Karniadakis GE Fractional Spectral Collocation Methods for Linear and Nonlinear Variable Order FPDEs. J. Comput. Phys. (2015). doi:10.1016/j.jcp.2014.12.001

  31. El-Khateb M.A., Al-Hohaly M.E., Hussien H.S.: Spectral Galerkin method for optimal control problems governed by integral and integro- differential equations. Math. Sci. Lett. 1, 33–42 (2012)

    Article  Google Scholar 

  32. Abd-Elhameed W.M.: On solving linear and nonlinear sixth-order two point boundary value problems via an elegant harmonic numbers operational matrix of derivatives. Comput. Model. Eng. Sci. 101(3), 159–185 (2014)

    MathSciNet  Google Scholar 

  33. Chen C.-M.: Numerical methods for solving a two-dimensional variable-order modified diffusion equation. Appl. Math. Comput. 225, 62–78 (2013)

    MathSciNet  MATH  Google Scholar 

  34. Mittal R.C., Tripathi A.: A collocation method for numerical solutions of coupled Burgers’ equations. Int. J. Comput. Meth. Eng. Sci. Mech. 15, 457–471 (2014)

    Article  MathSciNet  Google Scholar 

  35. Doha E.H., Bhrawy A.H., Abdelkawy M.A., Van Gorder R.A.: Jacobi–Gauss–Lobatto collocation method for the numerical solution of 1+1 nonlinear Schrodinger equations. J. Comput. Phys. 261, 244–255 (2014)

    Article  MathSciNet  Google Scholar 

  36. Bhrawy A.H.: An efficient Jacobi pseudospectral approximation for nonlinear complex generalized Zakharov system. Appl. Math. Comput. 247, 30–4664 (2014)

    MathSciNet  MATH  Google Scholar 

  37. Yang X., Zhang H., Xu D.: Orthogonal spline collocation method for the two-dimensional fractional sub-diffusion equation. J. Comput. Phys. 256, 824–837 (2014)

    Article  MathSciNet  Google Scholar 

  38. Yang Q., Yuan Y.: An approximation of semiconductor device by mixed finite element method and characteristics-mixed finite element method. Appl. Math. Comput. 225, 407–424 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Zhuang P., Liu F., Turner I., Gu Y.T.: Finite volume and finite element methods for solving a one-dimensional space-fractional Boussinesq equation. Appl. Math. Model. 38, 3860–3870 (2014)

    Article  MathSciNet  Google Scholar 

  40. Okuzono T., Otsuru T., Tomiku R., Okamoto N.: A finite-element method using dispersion reduced spline elements for room acoustics simulation. Appl. Acoust. 79, 1–8 (2014)

    Article  Google Scholar 

  41. Zhao J.: Compact finite difference methods for high order integro-differential equations. Appl. Math. Comput. 221, 66–78 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Marzban H.R., Hoseini S.M.: A composite Chebyshev finite difference method for nonlinear optimal control problems. Commun. Nonlinear Sci. Numer. Simul. 18, 1347–1361 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  43. Canuto C., Hussaini M.Y., Quarteroni A., Zang T.A.: Spectral Methods: Fundamentals in Single Domains. Springer, New York (2006)

    MATH  Google Scholar 

  44. Miller K., Ross B.: An Introduction to the Fractional Calaulus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  45. Szegö, G.: Orthogonal Polynomials. Colloquium Publications. XXIII. American Mathematical Society, USA. ISBN 978-0-8218-1023-1. MR 0372517 (1939)

  46. Doha E.H., Bhrawy A.H.: An efficient direct solver for multidimensional elliptic Robin boundary value problems using a Legendre spectral-Galerkin method. Comput. Math. Appl. 64, 558–571 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Li L., Stagnitti F., Barry D.A., Parlange J.Y.: Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour. Res. 35, 3253–3259 (1999)

    Article  Google Scholar 

  48. Li L., Barry D.A., Stagnitti F., Parlange J.Y., Jeng D.S.: Beach water table fluctuations due to spring-neap tides: moving boundary effects. Adv. Water Resour. 23, 817–824 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhrawy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhrawy, A.H., Abdelkawy, M.A. & Ezz-Eldien, S.S. Efficient Spectral Collocation Algorithm for a Two-Sided Space Fractional Boussinesq Equation with Non-local Conditions. Mediterr. J. Math. 13, 2483–2506 (2016). https://doi.org/10.1007/s00009-015-0635-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0635-y

Mathematics Subject Classification

Keywords

Navigation