Skip to main content
Log in

Fractional Differential Equations with Nonlocal Integral and Integer–Fractional-Order Neumann Type Boundary Conditions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce a new concept of the coupling of nonlocal integral and integer–fractional-order Neumann type boundary conditions, and discuss the existence and uniqueness of solutions for a coupled system of fractional differential equations supplemented with these conditions. The existence of solutions is derived from Leray–Schauder’s alternative and Schauder’s fixed point theorem, while the uniqueness of solutions is established by means of Banach’s contraction mapping principle. The results obtained in this paper are well illustrated with the aid of examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams E.E., Gelhar L.W.: Field study of dispersion in heterogeneous aquifer 2. Spat. Moments Anal. Water Resour. Res. 28, 3293–3307 (1992)

    Article  Google Scholar 

  2. Berkowitz, B., Cortis, A., Dentz, M., Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk. Rev. Geophys. 44, RG2003/2006, 2005RG000178 (2006)

  3. Metzler R., Klafter J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Sokolov I.M., Klafter J., Blumen A.: Fractional kinetics. Phys. Today 55, 48–54 (2002)

    Article  Google Scholar 

  5. Hatano Y., Hatano N.: Dispersive transport of ions in column experiments: an explanation of longtailed profiles. Water Resour. Res. 34, 1027–1033 (1998)

    Article  Google Scholar 

  6. Hatano Y., Nakagawa J., Wang S., Yamamoto M.: Determination of order in fractional diffusion equation. J. Math. Ind. 5(A-7), 51–57 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Miller K.S., Ross B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    MATH  Google Scholar 

  8. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

  9. Kilbas, A.A., Srivastava, H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, vol. 204. Elsevier Science B.V., Amsterdam (2006)

  10. Lakshmikantham V., Leela S., Vasundhara Devi J.: Theory of Fractional Dynamic Systems. Cambridge Academic Publishers, Cambridge (2009)

    MATH  Google Scholar 

  11. Sabatier, J., Agrawal, O.P., Machado, J.A.T. (eds.) Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Dordrecht (2007)

  12. Wei Z., Li Q., Che J.: Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative. Math. Anal. Appl. 367, 260–272 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ahmad, B., Ntouyas, S.K.: A four-point nonlocal integral boundary value problem for fractional differential equations of arbitrary order. Electron. J. Qual. Theory Differ. Equ. 2011(22), 15 (2011)

  14. Agarwal R.P., O’Regan D., Stanek S.: Positive solutions for mixed problems of singular fractional differential equations. Math. Nachr. 285, 27–41 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Henderson J., Ouahab A.: A Filippov’s theorem, some existence results and the compactness of solution sets of impulsive fractional order differential inclusions. Mediterr. J. Math. 9, 453–485 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Graef J.R., Kong L., Wang M.: Existence and uniqueness of solutions for a fractional boundary value problem on a graph. Fract. Calc. Appl. Anal. 17, 499–510 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, X.-J., Hristov, J., Srivastava, H.M., Ahmad, B.: Modelling fractal waves on shallow water surfaces via local fractional Kortewegde Vries equation. Abstr. Appl. Anal., Art. ID 278672 (2014)

  18. Tariboon, J., Ntouyas, S.K., Sudsutad, W.: Nonlocal Hadamard fractional integral conditions for nonlinear Riemann–Liouville fractional differential equations. Bound. Value Probl. 2014, 253 (2014)

  19. Nyamoradi N.: Infinitely many solutions for a class of fractional boundary value problems with Dirichlet boundary conditions. Mediterr. J. Math. 11, 75–87 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang L., Ahmad B., Wang G.: Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half line. Bull. Aust. Math. Soc. 91, 116–128 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ahmad B., Ntouyas S.K.: Nonlocal fractional boundary value problems with slit-strips boundary conditions. Fract. Calc. Appl. Anal. 18, 261–280 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Su X.: Boundary value problem for a coupled system of nonlinear fractional differential equations. Appl. Math. Lett. 22, 64–69 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ahmad B., Nieto J.J.: Existence results for a coupled system of nonlinear fractional differential equations with three-point boundary conditions. Comput. Math. Appl. 58, 1838–1843 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, J., Liu, Y., Liu, G.: Existence of solutions for fractional differential systems with antiperiodic boundary conditions. Comput. Math. Appl. 64, 1557–1566 (2012)

  25. Ntouyas, S.K., Obaid, M.: A coupled system of fractional differential equations with nonlocal integral boundary conditions. Adv. Differ. Equ. 2012, 130 (2012)

  26. Ahmad B., Ntouyas S.K.: A fully Hadamard type integral boundary value problem of a coupled system of fractional differential equations. Fract. Calc. Appl. Anal. 17, 348–360 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Granas A., Dugundji J.: Fixed Point Theory. Springer, New York (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bashir Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, B., Ntouyas, S.K. & Tariboon, J. Fractional Differential Equations with Nonlocal Integral and Integer–Fractional-Order Neumann Type Boundary Conditions. Mediterr. J. Math. 13, 2365–2381 (2016). https://doi.org/10.1007/s00009-015-0629-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0629-9

Mathematics Subject Classification

Keywords

Navigation