Skip to main content
Log in

On The Existence of Multiple Solutions of a Class of Third-Order Nonlinear Two-Point Boundary Value Problems

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A general approach is presented for proving existence of multiple solutions of the third-order nonlinear differential equation

$$Au^{\prime\prime\prime}(x) + u^{\prime\prime}(x)u^\prime(x) + u^\prime(x)f(u(x))=0,\quad x \in [0,1] ,$$

subject to given proper boundary conditions. The proof is constructive in nature, and could be used for numerical generation of the solution or closed-form analytical solution by introducing some special functions. The only restriction is about f(u), where it is supposed to be differentiable function with continuous derivative. It is proved the problem may admit no solution, may admit unique solution or may admit multiple solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shuicai L., Liao S.: An analytic approach to solve multiple solutions of a strongly nonlinear problem. Appl. Math. Comput. 169, 854–865 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Wazwaz A.: Adomian decomposition method for a reliable treatment of the Bratu-type equations. Appl. Math. Comput. 166, 652–663 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Sedeek A.M.A.L.: New smoother to enhance multigrid-based methods for Bratu problem. Appl. Math. Comput. 204, 325–339 (2008)

    MathSciNet  MATH  Google Scholar 

  4. Muhammed I., Hamdan A.: An efficient method for solving Bratu equations. Appl. Math. Comput. 176, 704–713 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Abbasbandy S., Shivanian E.: Prediction of multiplicity of solutions of nonlinear boundary value problems: novel application of homotopy analysis method. Commun. Nonlinear Sci. Numer. Simul. 15, 3830–3846 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chowdhury M., Hashim I.: Analytical solutions to heat transfer equations by homotopy perturbation method revisited. Phys. Lett. A 372, 1240–1243 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ganji D.: The application of He’s homotopy perturbation method to nonlinear equations arising in heat transfer. Phys. Lett. A 355, 337–341 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tari H.B.H., Ganji D.D.: The application of He’s variational iteration method to nonlinear equations arising in heat transfer. Phys. Lett. A 363, 213–217 (2007)

    Article  MATH  Google Scholar 

  9. Abbasbandy S., Shivanian E.: Exact analytical solution of a nonlinear equation arising in heat transfer. Phys. Lett. A 374, 567–574 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Shivanian E., Abbasbandy S.: Predictor homotopy analysis method: two points second order boundary value problems. Nonlinear Anal. Real. 15, 89–99 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Abramowitz M., Stegun I.: Handbook of mathematical functions. Dover, New York (1972)

    MATH  Google Scholar 

  12. Erdelyi A., Magnus W., Oberhettinger F., Tricomi F.: Higher transcendental functions, vol. 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  13. Roberts S., Shipman J.: On the closed form solution of Troesch’s problem. J. Comput. Phys. 21(3), 291–304 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hlaváček V., Marek M., Kubíček M.: Modelling of chemical reactors, X: multiple solutions of enthalpy and mass balances for a catalytic reaction within a porous catalyst particle. Chem. Eng. Sci. 23, 1083–1097 (1968)

    Article  Google Scholar 

  15. Seydel, R.: World of bifurcation: Online collection and tutorials of nonlinear phenomena. http://www.bifurcation.de.

  16. William F., James A.: Singular non-linear two-point boundary value problems: existence and uniqueness. Nonlinear Anal. Real. 71, 1059–1072 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kumar M., Singh N.: Modified adomian decomposition method and computer implementation for solving singular boundary value problems arising in various physical problems. Comput. Chem. Eng. 34, 1750–1760 (2010)

    Article  Google Scholar 

  18. Makinde O., Mhone P.: Hermite-Pade approximation approach to MHD Jeffery-Hamel flows. Appl. Math. Comput. 181, 966–972 (2006)

    MATH  Google Scholar 

  19. Ganji Z., Ganji D., Esmaeilpour M.: Study on nonlinear Jeffery-Hamel flow by He’s semi-analytical methods and comparison with numerical results. Comput. Math. Appl. 58, 2107–2116 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Domairry G., Mohsenzadeh A., Famouri M.: The application of homotopy analysis method to solve nonlinear differential equation governing Jeffery-Hamel flow. Commun. Nonlinear Sci. Numer. Simul. 14, 85–95 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. Motsa S., Sibanda P., Awad F., Shateyi S.: A new spectral-homotopy analysis method for the MHD Jeffery-Hamel problem. Comput. Fluids. 39, 1219–1225 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Abbasbandy S., Shivanian E.: Exact analytical solution of the MHD Jeffery-Hamel flow problem. Meccanica 47, 1379–1389 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Li S.: Positive solutions of nonlinear singular third-order two-point boundary value problem. J. Math. Anal. Appl. 323, 413–425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lepin A., Lepin L., Myshkisb A.: Two-point boundary value problem for nonlinear differential equation of nth order. Nonlinear Anal. Theory Meth. Appl. 40, 397–406 (2000)

    Article  MATH  Google Scholar 

  25. Afuwape A.: Frequency domain approach to some third-order nonlinear differential equations. Nonlinear Anal. Theory Meth. Appl. 71, 972–978 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Boucherif A., Bouguimab S., Malki N., Benbouziane Z.: Third order differential equations with integral boundary conditions. Nonlinear Anal. Theory Meth. Appl. 71, 1736–1743 (2009)

    Article  MathSciNet  Google Scholar 

  27. Jankowski T.: Existence of positive solutions to third order differential equations with advanced arguments and nonlocal boundary conditions. Nonlinear Anal. Theory Meth. Appl. 75, 913–923 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Qian C.: On global stability of third-order nonlinear differential equations. Nonlinear Anal. Theory Meth. Appl. 47, 1379–1389 (2012)

    Google Scholar 

  29. Yao Q.: Solution and positive solution for a semilinear third-order two-point boundary value problem. Nonlinear Anal. Theory Meth. Appl. 17, 1171–1175 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Yao Q., Feng Y.: The existence of solution for a third-order two-point boundary value problem. Appl. Math. Lett. 15, 227–232 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mosconi S., Santra S.: On the existence and non-existence of bounded solutions for a fourth order ODE. J. Differ. Equations. 255, 4149–4168 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu T.: Existence and multiplicity of positive solutions for a class of nonlinear boundary value problems. J. Differ. Equations. 252, 3403–3435 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Coddington E.: An introduction to ordinary differential equations. Prentice-Hall, Englewood Cliffs (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elyas Shivanian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shivanian, E., Abdolrazaghi, F. On The Existence of Multiple Solutions of a Class of Third-Order Nonlinear Two-Point Boundary Value Problems. Mediterr. J. Math. 13, 2339–2351 (2016). https://doi.org/10.1007/s00009-015-0627-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00009-015-0627-y

Mathematics Subject Classification

Keywords

Navigation