Mediterranean Journal of Mathematics

, Volume 13, Issue 4, pp 1949–1961 | Cite as

Absolutely Summing Lipschitz Conjugates

  • R. YahiEmail author
  • D. Achour
  • P. Rueda


The aim of this paper is to contribute to the study of summability of Lipschitz mappings by characterizing those Lipschitz mappings whose Lipschitz conjugates are absolutely p-summing, namely the classes of Lipschitz strongly p-summing mappings (1 < p ≤ ∞).


Lipschitz operators strongly Lipschitz p-summing strongly p-summing Lipschitz absolutely p-summing operators Arens–Eells space Piesch factorization theorem 

Mathematics Subject Classification

47L20 47J99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Achour, D., Rueda, P., Sánchez-Pérez, E.A., Yahi, R.: Lipschitz operator ideals and the approximation property. (Submitted)Google Scholar
  2. 2.
    Arens R.F., Eels J. Jr: On embedding uniform and topological spaces. Pac. J. Math. 6, 397–403 (1956)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bu Q.: Some mapping properties of p-summing operators with Hilbertian domain. Contemp. Math. 328, 145–149 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Botelho G., Pellegrino D., Rueda P.: A unified Pietsch domination theorem. J. Math. Anal. Appl. 365(1), 269–276 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chávez-Domínguez J.A.: Duality for Lipschitz p-summing operators. J. Funct. Anal. 261, 387–407 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chávez-Domínguez J.A.: Lipschitz (q, p)-mixing operators. Proc. Am. Math. Soc. 140, 3101–3115 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen D., Zheng B.: Remarks on Lipschitz p-summing operators. Proc. Am. Math. Soc. 139(8), 2891–2898 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chen D., Zheng B.: Lipschitz p-integral operators and Lipschitz p-nuclear operators. Nonlinear Anal. 75, 5270–5282 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cohen J.S.: Absolutely p-summing, p-nuclear operators and their conjugates. Math. Ann. 201, 177–200 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diestel J., Jarchow H., Tonge A.: Absolutely Summing Operators. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  11. 11.
    Farmer J.D., Johnson W.B.: Lipschitz p-summing operators. Proc. Am. Math. Soc. 137(9), 2989–2995 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jiménez-Vargas A., Sepulcre J.M., Villegas-Vallecillos M.: Lipschitz compact operators. J. Math. Anal. Appl. 415(2), 889–901 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kalton N.J.: Spaces of Lipschitz and Hölder functions and their applications. Collect. Math. 55, 171–217 (2004)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Pellegrino D., Santos J.: A general Pietsch domination theorem. J. Math. Anal. Appl. 375(1), 371–374 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Pellegrino D., Santos J., Seoane-Sepúlveda J.B.: Some techniques on nonlinear analysis and applications. Adv. Math. 229(2), 1235–1265 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Saadi K.: Some properties for Lipschitz strongly p-summing operators. J. Math. Anal. Appl. 423(2), 1410–1426 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sawashima, I.: Methods of Lipschitz duals. In: Lecture Notes Ec. Math Sust, vol. 419, pp. 247–259. Springer, New York (1975)Google Scholar
  18. 18.
    Weaver N.: Lipschitz Algebras. World Scientific Publishing Co., Singapore (1999)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Laboratoire d’Analyse Fonctionnelle et Géométrie des EspacesUniversity of M’silaM’silaAlgeria
  2. 2.Departamento de Análisis MatemáticoUniversidad de ValenciaBurjassot, ValenciaSpain

Personalised recommendations